Picture of scraped petri dish

Scrape below the surface of Strathprints...

Explore world class Open Access research by researchers at the University of Strathclyde, a leading technological university.


An adaptive multi-scale approach to the modelling of masonry structures

Ainsworth, M. and Mihai, L.A. (2009) An adaptive multi-scale approach to the modelling of masonry structures. International Journal for Numerical Methods in Engineering, 78 (10). pp. 1135-1163. ISSN 0029-5981

Full text not available in this repository. (Request a copy from the Strathclyde author)


We present an adaptive multi-scale approach for predicting the mechanical behaviour of masonry structures modelled as dynamic frictional multi-body contact problems. In this approach, the iterative splitting of the contact problem into normal contact and frictional contact is combined with a semismooth Newton/primal-dual active-set procedure to calculate deformations and openings in the model structures. This algorithm is then coupled with a novel adaptive multi-scale technique involving a macroscopic scale, which is the size of the masonry structure, and a mesoscopic scale, which is the size of the constituents (bricks, stone-blocks), to predict appearance of dislocations and stress distribution in large-scale masonry structures. Comparisons of the numerical results with data from experimental tests and from practical observations illustrate the predictive capability of the multi-scale algorithm.