Picture of a sphere with binary code

Making Strathclyde research discoverable to the world...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. It exposes Strathclyde's world leading Open Access research to many of the world's leading resource discovery tools, and from there onto the screens of researchers around the world.

Explore Strathclyde Open Access research content

Dynamics of nonlinearly interacting magnetic electron drift vortex modes in a nonuniform plasma

Eliasson, Bengt and Shukla, P.K. and Pavlenko, V.P. (2009) Dynamics of nonlinearly interacting magnetic electron drift vortex modes in a nonuniform plasma. Physics of Plasmas, 16 (4). 042306-1. ISSN 1070-664X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A simulation study of dynamical evolution of nonlinearly interacting two-dimensional magnetic electron drift vortex (MEDV) modes in a nonuniform plasma is presented. Depending on the equilibrium density and temperature gradients, the system can either be stable or unstable. The unstable system reveals spontaneous generation of magnetic fields from noise level, and large-scale magnetic field structures are formed. When the system is linearly stable, one encounters MEDV mode turbulence in which there is a competition between zonons (zonal flows) and streamers. For large MEDV mode amplitudes, one encounters the formation of localized and small-scale magnetic vortices and vortex pairs with scale sizes of the order of the electron skin depth. The MEDV turbulence exhibits nonuniversal (non-Kolmogorov-type) spectra for different sets of plasma parameters. The relevance of this work to laboratory and cosmic plasmas is briefly mentioned.