Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Dynamics of nonlinearly interacting magnetic electron drift vortex modes in a nonuniform plasma

Eliasson, Bengt and Shukla, P.K. and Pavlenko, V.P. (2009) Dynamics of nonlinearly interacting magnetic electron drift vortex modes in a nonuniform plasma. Physics of Plasmas, 16 (4). 042306-1. ISSN 1070-664X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A simulation study of dynamical evolution of nonlinearly interacting two-dimensional magnetic electron drift vortex (MEDV) modes in a nonuniform plasma is presented. Depending on the equilibrium density and temperature gradients, the system can either be stable or unstable. The unstable system reveals spontaneous generation of magnetic fields from noise level, and large-scale magnetic field structures are formed. When the system is linearly stable, one encounters MEDV mode turbulence in which there is a competition between zonons (zonal flows) and streamers. For large MEDV mode amplitudes, one encounters the formation of localized and small-scale magnetic vortices and vortex pairs with scale sizes of the order of the electron skin depth. The MEDV turbulence exhibits nonuniversal (non-Kolmogorov-type) spectra for different sets of plasma parameters. The relevance of this work to laboratory and cosmic plasmas is briefly mentioned.

Item type: Article
ID code: 19107
Keywords: laser produced plasmas, large scale structure, weibel instability, fields, turbulence, vortices, waves, Physics
Subjects: Science > Physics
Department: Faculty of Science > Physics
Related URLs:
    Depositing user: Strathprints Administrator
    Date Deposited: 18 May 2010 15:30
    Last modified: 04 Oct 2013 11:40
    URI: http://strathprints.strath.ac.uk/id/eprint/19107

    Actions (login required)

    View Item