Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Electrical issues associated with sea-water immersed windings in electrical generators for wave- and tidal current-driven power generation

Fletcher, J. and Judendorfer, T. and Mueller, M. and Hassanain, N. and Muhr, M. (2009) Electrical issues associated with sea-water immersed windings in electrical generators for wave- and tidal current-driven power generation. IET Renewable Power Generation, 3 (2). pp. 254-264. ISSN 1752-1416

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

For the majority of proposed wave- and tidal current-driven power generation applications, the electrical generators are submerged in sea water, frequently at many metres of depth. The environment places significant stress on the rotating or translating seals between the driven shaft and the electrical generator leading to reduced reliability and lifetime. A potential solution is to eliminate the seal, thereby flooding the generator and allowing sea water to circulate around the shaft, windings and rotor of the machine. The impact of immersing the windings of the machine in sea water is assessed here. Specifically, the impact that the insulation has on the leakage capacitance as well as the consequent impact the leakage capacitance has on current and voltage oscillations in the switching converter used to excite the winding is assessed. Thermal tests are conducted to assess the impact of the insulation on the thermal conductance of the coil-insulation system. Experimental evidence is provided.