Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Interaction between muscle temperature and contraction velocity affects mechanical efficiency during moderate-intensity cycling exercise in young and older women

Bell, M.P. and Ferguson, R.A. (2009) Interaction between muscle temperature and contraction velocity affects mechanical efficiency during moderate-intensity cycling exercise in young and older women. Journal of Applied Physiology, 107 (3). pp. 763-769. ISSN 0021-8987

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The effect of elevated muscle temperature on mechanical efficiency was investigated during exercise at different pedal frequencies in young and older women. Eight young (24 ± 3 yr) and eight older (70 ± 4 yr) women performed 6-min periods of cycling at 75% ventilatory threshold at pedal frequencies of 45, 60, 75, and 90 rpm under control and passively elevated local muscle temperature conditions. Mechanical efficiency was calculated from the ratio of energy turnover (pulmonary O2 uptake) and mechanical power output. Overall, elevating muscle temperature increased (P < 0.05) mechanical efficiency in young (32.0 ± 3.1 to 34.0 ± 5.5%) and decreased (P < 0.05) efficiency in older women (30.2 ± 5.6 to 27.9 ± 4.1%). The different effect of elevated muscle temperature in young and older women reflects a shift in the efficiency-velocity relationship of skeletal muscle. These effects may be due to differences in recruitment patterns, as well as sarcopenic and fiber-type changes with age.