Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Alkali-metal-mediated manganation(II) of naphthalenes: constructing metal la-anthracene and metalla-phenanthrene structures

Blair, V.L. and Clegg, W. and Mulvey, R.E. and Russo, L. (2009) Alkali-metal-mediated manganation(II) of naphthalenes: constructing metal la-anthracene and metalla-phenanthrene structures. Inorganic Chemistry, 48 (18). pp. 8863-8870. ISSN 0020-1669

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Alkali-metal-mediated manganation (AMMMn) reactions of the synergic base sodium monoalkyl-bisamidomanganate [(tmeda)Na(tmp)(CH2SiMe3)Mn(tmp)] (1) with naphthalene, 1-methoxynaphthalene, or 2-methoxynaphthalene are reported. These novel direct manganation [Mn(II)] reactions produced the crystalline ortho-manganated naphthyl products [(tmeda)Na(tmp)(2-C10H7)Mn(tmp)] (3), [(tmeda)Na(tmp){2-(1-MeOC10H6)}Mn(CH2SiMe3)] (4), and [(tmeda)Na(tmp){3-(2-MeOC10H6)}Mn(tmp)] (5) in reasonable to good isolated yields of 88, 65, and 85%, respectively. All three new complexes have been crystallographically characterized, showing discrete molecular structures with trigonal planar Mn centers forming σ bonds to the deprotonated C atoms of the naphthyl ligands, whereas Na interacts with the aromatic π system in 3 or with the MeO substituent in 4 and 5. These latter interactions lead to interesting 5,6,7,8-tetrahydrophenanthrene-like and 1,2,3,4-tetrahydroanthracene-like metallacyclic motifs in 4 and 5, respectively. The sensitivity of these AMMMn reactions to impurities has been illustrated in the serendipitous preparation of the benzenediide complex [(tmeda)2Na2(tmp)2(1,4-C6H4)Mn2(tmp)2] (6) from one attempted repeat synthesis of 5. An 'open inverse crown' arrangement with a 1,4-dimanganated benzene molecule is revealed in the crystal structure of 6.