Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Alkali-metal-mediated manganation(II) of naphthalenes: constructing metal la-anthracene and metalla-phenanthrene structures

Blair, V.L. and Clegg, W. and Mulvey, R.E. and Russo, L. (2009) Alkali-metal-mediated manganation(II) of naphthalenes: constructing metal la-anthracene and metalla-phenanthrene structures. Inorganic Chemistry, 48 (18). pp. 8863-8870. ISSN 0020-1669

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Alkali-metal-mediated manganation (AMMMn) reactions of the synergic base sodium monoalkyl-bisamidomanganate [(tmeda)Na(tmp)(CH2SiMe3)Mn(tmp)] (1) with naphthalene, 1-methoxynaphthalene, or 2-methoxynaphthalene are reported. These novel direct manganation [Mn(II)] reactions produced the crystalline ortho-manganated naphthyl products [(tmeda)Na(tmp)(2-C10H7)Mn(tmp)] (3), [(tmeda)Na(tmp){2-(1-MeOC10H6)}Mn(CH2SiMe3)] (4), and [(tmeda)Na(tmp){3-(2-MeOC10H6)}Mn(tmp)] (5) in reasonable to good isolated yields of 88, 65, and 85%, respectively. All three new complexes have been crystallographically characterized, showing discrete molecular structures with trigonal planar Mn centers forming σ bonds to the deprotonated C atoms of the naphthyl ligands, whereas Na interacts with the aromatic π system in 3 or with the MeO substituent in 4 and 5. These latter interactions lead to interesting 5,6,7,8-tetrahydrophenanthrene-like and 1,2,3,4-tetrahydroanthracene-like metallacyclic motifs in 4 and 5, respectively. The sensitivity of these AMMMn reactions to impurities has been illustrated in the serendipitous preparation of the benzenediide complex [(tmeda)2Na2(tmp)2(1,4-C6H4)Mn2(tmp)2] (6) from one attempted repeat synthesis of 5. An 'open inverse crown' arrangement with a 1,4-dimanganated benzene molecule is revealed in the crystal structure of 6.