Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Hybrid GaN/organic microstructured light-emitting devices via ink-jet printing

Wu, M. and Gong, Zheng and Keuhne, A.J.C. and Kanibolotsky, Alexander and Chen, Yujie and Perepichka, I.F. and Mackintosh, Allan and Gu, Erdan and Skabara, Peter and Pethrick, Richard and Dawson, Martin (2009) Hybrid GaN/organic microstructured light-emitting devices via ink-jet printing. Optics Express, 17 (19). pp. 16436-16443. ISSN 1094-4087

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We report what we believe to be the first use of organic nanostructures for efficient colour conversion of gallium nitride light emitting diodes (LEDs). The particular nanomaterials, based on star-shaped truxene oligofluorenes, offer an attractive alternative to inorganic colloidal quantum dots in the search for novel and functional 'nanophosphors'. The truxenes have been formed into a composite with photoresist and ink-jet printed onto microstructured gallium nitride LEDs, resulting in a demonstrator hybrid microdisplay technology with pixel size ~32μm. The output power density of the hybrid device was measured to be ~8.4mW/cm2 per pixel at driving current density of 870.8A/cm2 and the efficiency of colour conversion at drive current of 7mA was estimated to be approximately 50%.