Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Hybrid GaN/organic microstructured light-emitting devices via ink-jet printing

Wu, M. and Gong, Zheng and Keuhne, A.J.C. and Kanibolotsky, Alexander and Chen, Yujie and Perepichka, I.F. and Mackintosh, Allan and Gu, Erdan and Skabara, Peter and Pethrick, Richard and Dawson, Martin (2009) Hybrid GaN/organic microstructured light-emitting devices via ink-jet printing. Optics Express, 17 (19). pp. 16436-16443. ISSN 1094-4087

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We report what we believe to be the first use of organic nanostructures for efficient colour conversion of gallium nitride light emitting diodes (LEDs). The particular nanomaterials, based on star-shaped truxene oligofluorenes, offer an attractive alternative to inorganic colloidal quantum dots in the search for novel and functional 'nanophosphors'. The truxenes have been formed into a composite with photoresist and ink-jet printed onto microstructured gallium nitride LEDs, resulting in a demonstrator hybrid microdisplay technology with pixel size ~32μm. The output power density of the hybrid device was measured to be ~8.4mW/cm2 per pixel at driving current density of 870.8A/cm2 and the efficiency of colour conversion at drive current of 7mA was estimated to be approximately 50%.