Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

On the use of stabilizing transformations for detecting unstable periodic orbits in high-dimensional flows

Crofts, J.J. and Davidchack, R.L. (2009) On the use of stabilizing transformations for detecting unstable periodic orbits in high-dimensional flows. Chaos, Solitons and Fractals, 19 (3). ISSN 0960-0779

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We explore the possibility of extending the stabilizing transformations approach [ J. J. Crofts and R. L. Davidchack, SIAM J. Sci. Comput. (USA) 28, 1275 (2006) ]. to the problem of locating large numbers of unstable periodic orbits in high-dimensional flows, in particular those that result from spatial discretization of partial differential equations. The approach has been shown to be highly efficient when detecting large sets of periodic orbits in low-dimensional maps. Extension to low-dimensional flows has been achieved by the use of an appropriate Poincaré surface of section [ D. Pingel, P. Schmelcher, and F. K. Diakonos, Phys. Rep. 400, 67 (2004) ]. For the case of high-dimensional flows, we show that it is more efficient to apply stabilizing transformations directly to the flows without the use of the Poincaré surface of section. We use the proposed approach to find many unstable periodic orbits in the model example of a chaotic spatially extended system-the Kuramoto-Sivashinsky equation. The performance of the proposed method is compared against other methods such as Newton-Armijo and Levenberg-Marquardt algorithms. In the latter case, we also argue that the Levenberg-Marquardt algorithm, or any other optimization-based approach, is more efficient and simpler in implementation when applied directly to the detection of periodic orbits in high-dimensional flows without the use of the Poincaré surface of section or other additional constraints.