Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

The co-encapsulated antioxidant nanoparticles of ellagic acid and coenzyme Q10 ameliorate hyperlipidemia in high fat diet fed rats

Ratnam, D. and Chandraiah, G. and Meena, A. K. and Ramarao, P. and Kumar, M.N.V. Ravi (2009) The co-encapsulated antioxidant nanoparticles of ellagic acid and coenzyme Q10 ameliorate hyperlipidemia in high fat diet fed rats. Journal of Nanoscience and Nanotechnology, 9 (11). pp. 6741-6746. ISSN 1533-4880

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Obesity is the major cause of type 2 diabetes with hyperlipidemia as one of its complications and antioxidants were found to be beneficial in such disease conditions. The present investigation is geared towards reduction of the dose required/improve the bioavailability of the combination of antioxidants, ellagic acid and coenzyme Q10 by co-encapsulating them into nanoparticles and study the possible synergism in ameliorating hyperlipidemia in high fat diet fed rats. The co-encapsulated particles at 10% (w/w of polymer) loading of ellagic acid and coenzyme Q10 have particle size of 260 nm. Male Sprague-Dawley (SD) rats on feeding high fat diet for over 4 weeks developed hyperlipidemia. The hyperlipidemic rats on 2 weeks post treatment with antioxidant combination administered as oral suspension or nanoparticles found to ameliorate the hyperlipidemic conditions and nanoparticles were found to be equally/more effective at 3 times lower dose in sustaining cholesterol lowering effect for extended periods, lowering glucose and triglycerides and in improving endothelial functioning, indicating the ability of the nanoparticles in improving efficacy of the duo. The results promise the potential of nanoparticles in improving the efficacy of ellagic acid and coenzyme Q10 in treating high fat diet induced hyperlipidemia in rats.