Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Exploring models for semantic category verification

Roussinov, D. and Turetken, O. (2009) Exploring models for semantic category verification. Information Systems, 34 (8). pp. 753-765. ISSN 0306-4379

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Many artificial intelligence tasks, such as automated question answering, reasoning, or heterogeneous database integration, involve verification of a semantic category (e.g. 'coffee' is a drink, 'red' is a color, while 'steak' is not a drink and 'big' is not a color). In this research, we explore completely automated on-the-fly verification of a membership in any arbitrary category which has not been expected a priori. Our approach does not rely on any manually codified knowledge (such as WordNet or Wikipedia) but instead capitalizes on the diversity of topics and word usage on the World Wide Web, thus can be considered 'knowledge-light' and complementary to the 'knowledge-intensive' approaches. We have created a quantitative verification model and established (1) what specific variables are important and (2) what ranges and upper limits of accuracy are attainable. While our semantic verification algorithm is entirely self-contained (not involving any previously reported components that are beyond the scope of this paper), we have tested it empirically within our fact seeking engine on the well known TREC conference test questions. Due to our implementation of semantic verification, the answer accuracy has improved by up to 16% depending on the specific models and metrics used.