Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Exploring models for semantic category verification

Roussinov, D. and Turetken, O. (2009) Exploring models for semantic category verification. Information Systems, 34 (8). pp. 753-765. ISSN 0306-4379

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Many artificial intelligence tasks, such as automated question answering, reasoning, or heterogeneous database integration, involve verification of a semantic category (e.g. 'coffee' is a drink, 'red' is a color, while 'steak' is not a drink and 'big' is not a color). In this research, we explore completely automated on-the-fly verification of a membership in any arbitrary category which has not been expected a priori. Our approach does not rely on any manually codified knowledge (such as WordNet or Wikipedia) but instead capitalizes on the diversity of topics and word usage on the World Wide Web, thus can be considered 'knowledge-light' and complementary to the 'knowledge-intensive' approaches. We have created a quantitative verification model and established (1) what specific variables are important and (2) what ranges and upper limits of accuracy are attainable. While our semantic verification algorithm is entirely self-contained (not involving any previously reported components that are beyond the scope of this paper), we have tested it empirically within our fact seeking engine on the well known TREC conference test questions. Due to our implementation of semantic verification, the answer accuracy has improved by up to 16% depending on the specific models and metrics used.