Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Averaging semiempirical NMR chemical shifts: dynamic effects on the subpicosecond time scale

Tuttle, T. (2009) Averaging semiempirical NMR chemical shifts: dynamic effects on the subpicosecond time scale. Journal of Physical Chemistry A, 113 (43). pp. 11723-11733. ISSN 1089-5639

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The variation of the 1H and 13C NMR chemical shifts of heptapeptide ATWLPPR was investigated during a hybrid quantum mechanical (QM)/molecular mechanical (MM = CHARMM) molecular dynamics simulation of the peptide in aqueous solvent. The semiempirical method OM3 was used as the QM method, and the effect of augmenting the OM3 Hamiltonian with an empirical dispersion term (OM3-D) was also explored. The semiempirical MNDO method was used to calculate the chemical shifts of snapshots taken at 50 fs intervals during the 100 ps simulation. The calculated chemical shifts are highly sensitive to fluctuations of the molecular geometry on the time scale of molecular vibrations. However, the time-averaged chemical shift over the full simulation results in reasonable agreement with the experimental NMR chemical shifts and more consistent results compared with the averaged chemical shifts obtained from gas-phase optimized conformations of the peptide. The OM3 and OM3-D methods are stable and reproduce the main features of the experimental geometry during the 100 ps simulation.