Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Molecularly imprinted solid-phase extraction of cephalexin from water-based matrices

Beltran, A. and Fontanals, N. and Marce, R.M. and Cormack, P.A.G. and Borrull, F. (2009) Molecularly imprinted solid-phase extraction of cephalexin from water-based matrices. Journal of Separation Science, 32 (19). pp. 3319-3326. ISSN 1615-9306

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

In the present paper, we describe the synthesis of a cephalexin (CFX) molecularly imprinted polymer (MIP), the direct application of the MIP to SPE for the determination of CFX (which is a -lactam antibiotic) in human urine and the use of the MIP in a tandem SPE system to determine CFX in river water. The molecularly imprinted polymers (MIP) showed cross-selectivity for amoxicillin (AMX; also a -lactam antibiotic). This allowed both CFX and AMX to be quantified in acidified human urine, with recoveries of 78 and 60% for CFX and AMX, respectively, when the urine samples were spiked with CFX and AMX at 4 mg/L. These analyses were facile because the molecularly imprinted solid-phase extraction (MISPE) extracts were clear compared to the nonpurified samples. In order to increase the sample volume for river water analyses, a tandem SPE system incorporating a commercially available sorbent was implemented. With this set-up, CFX was determined with recoveries in excess of 50% when 200 mL of acidified river water samples spiked at 10 g/L with CFX were percolated through the tandem system.