Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Stepsize selection for tolerance proportionality in explicit Runge-Kutta codes

Calvo, M.C. and Higham, D.J. and Montijano, J.M. and Rández, L. (1997) Stepsize selection for tolerance proportionality in explicit Runge-Kutta codes. Advances in Computational Mathematics, 7 (3). pp. 361-382. ISSN 1019-7168

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The potential for adaptive explicit Runge-Kutta (ERK) codes to produce global errors that decrease linearly as a function of the error tolerance is studied. It is shown that this desirable property may not hold, in general, if the leading term of the locally computed error estimate passes through zero. However, it is also shown that certain methods are insensitive to a vanishing leading term. Moreover, a new stepchanging policy is introduced that, at negligible extra cost, ensures a robust global error behaviour. The results are supported by theoretical and numerical analysis on widely used formulas and test problems. Overall, the modified stepchanging strategy allows a strong guarantee to be attached to the complete numerical process.