Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Stepsize selection for tolerance proportionality in explicit Runge-Kutta codes

Calvo, M.C. and Higham, D.J. and Montijano, J.M. and Rández, L. (1997) Stepsize selection for tolerance proportionality in explicit Runge-Kutta codes. Advances in Computational Mathematics, 7 (3). pp. 361-382. ISSN 1019-7168

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The potential for adaptive explicit Runge-Kutta (ERK) codes to produce global errors that decrease linearly as a function of the error tolerance is studied. It is shown that this desirable property may not hold, in general, if the leading term of the locally computed error estimate passes through zero. However, it is also shown that certain methods are insensitive to a vanishing leading term. Moreover, a new stepchanging policy is introduced that, at negligible extra cost, ensures a robust global error behaviour. The results are supported by theoretical and numerical analysis on widely used formulas and test problems. Overall, the modified stepchanging strategy allows a strong guarantee to be attached to the complete numerical process.