Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Exploiting the similarity of non-matching terms at retrieval time

Crestani, F. (2000) Exploiting the similarity of non-matching terms at retrieval time. Information Retrieval, 2 (1). pp. 23-43. ISSN 1386-4564

[img]
Preview
PDF (strathprints001889.pdf)
strathprints001889.pdf - Accepted Author Manuscript

Download (105kB) | Preview

Abstract

In classic information retrieval systems a relevant document will not be retrieved in response to a query if the document and query representations do not share at least one term. This problem, known as 'term mismatch', has been recognised for a long time by the information retrieval community and a number of possible solutions have been proposed. Here I present a preliminary investigation into a new class of retrieval models that attempt to solve the term mismatch problem by exploiting complete or partial knowledge of term similarity in the term space. The use of term similarity can enhance classic retrieval models by taking into account non-matching terms. The theoretical advantages and drawbacks of these models are presented and compared with other models tackling the same problem. A preliminary experimental investigation into the performance gain achieved by exploiting term similarity with the proposed models is presented and discussed.