Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Improving platinum(II)-based anticancer drug delivery using cucurbit[n]urils

Wheate, N.J. (2008) Improving platinum(II)-based anticancer drug delivery using cucurbit[n]urils. Journal of Inorganic Biochemistry, 102 (12). pp. 2060-2066. ISSN 0162-0134

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Despite the synthesis of hundreds of new platinum(II) and platinum(IV)-based complexes each year as potential anticancer drugs, only three have received world-wide approval: cisplatin, carboplatin and oxaliplatin. The next big advance in platinum-based chemotherapy is not likely to come from the development of new drugs, but from the controlled and targeted delivery of already approved drugs or those in late stage clinical trials. Encapsulation of platinum drugs inside macromolecules has already demonstrated promise, and encapsulation within cucurbit[n]urils has shown particular potential. Partial or full encapsulation within cucurbit[n]urils provides steric hindrance to drug degradation by peptides and proteins, and the use of different sized cucurbit[n]urils allows for the tuning of drug release rates, cytotoxicity and toxicity.