Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Improving platinum(II)-based anticancer drug delivery using cucurbit[n]urils

Wheate, N.J. (2008) Improving platinum(II)-based anticancer drug delivery using cucurbit[n]urils. Journal of Inorganic Biochemistry, 102 (12). pp. 2060-2066. ISSN 0162-0134

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Despite the synthesis of hundreds of new platinum(II) and platinum(IV)-based complexes each year as potential anticancer drugs, only three have received world-wide approval: cisplatin, carboplatin and oxaliplatin. The next big advance in platinum-based chemotherapy is not likely to come from the development of new drugs, but from the controlled and targeted delivery of already approved drugs or those in late stage clinical trials. Encapsulation of platinum drugs inside macromolecules has already demonstrated promise, and encapsulation within cucurbit[n]urils has shown particular potential. Partial or full encapsulation within cucurbit[n]urils provides steric hindrance to drug degradation by peptides and proteins, and the use of different sized cucurbit[n]urils allows for the tuning of drug release rates, cytotoxicity and toxicity.