Picture of flying drone

Award-winning sensor signal processing research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers involved in award-winning research into technology for detecting drones. - but also other internationally significant research from within the Department of Electronic & Electrical Engineering.

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Anionic PAMAM dendrimers as drug delivery vehicles for transition metal-based anticancer drugs

Pisani, Michelle J. and Wheate, N.J. and Keene, F. Richard and Aldrich-Wright, J.R. and Collins, J. Grant (2009) Anionic PAMAM dendrimers as drug delivery vehicles for transition metal-based anticancer drugs. Journal of Inorganic Biochemistry, 103 (3). pp. 373-380. ISSN 0162-0134

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The use of anionic half-generation poly(amidoamine) dendrimers as drug delivery vehicles for [Pt(S,S-dach)(5,6-Me2phen)]2+ (56MESS) (where S,S-dach = 1S,2S-diaminocyclohexane; 5,6-Me2phen = 5,6-dimethyl-1,10-phenanthroline) and [{Δ,Δ-Ru(phen)2}2(μ-bb7)]4+ (Rubb7) (where phen = 1,10-phenanthroline; bb7 = 1,7-bis[4-(4′-methyl-2,2′-bipyridyl)heptane]) has been studied by nuclear magnetic resonance spectroscopy. From one- and two-dimensional 1H NMR spectra both 56MESS and Rubb7 were found to bind to the surface of generation 3.5, 4.5, 5.5 and 6.5 dendrimers through electrostatic interactions. The higher charge and larger size of Rubb7 resulted in stronger binding to all dendrimer generations (Kb 2 × 105 M−1) compared with 56MESS (Kb 1 × 104 M−1). Interestingly, there appeared to be no observable trend between dendrimer size and binding constant strength. The size of the free and 56MESS-bound dendrimers were examined using pulsed-gradient spin-echo NMR. The dendrimers ranged in hydrodynamic diameter from 11 to 20 nm and in all cases were larger than their corresponding full-generation dendrimer. Upon the addition of 56MESS the diameter of the dendrimers increased, consistent with surface binding.