Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Mission analysis of Hevelius-lunar microsatellite mission

Scarì, Ettore and Ceriotti, Matteo and Colombo, Camilla and Vasile, Massimiliano (2005) Mission analysis of Hevelius-lunar microsatellite mission. In: 56th International Astronautical Congress, 2005-10-17 - 2005-10-21.

[img]
Preview
PDF (strathprints018849.pdf)
strathprints018849.pdf

Download (1MB) | Preview

Abstract

This paper describes the mission analysis and design of the 'Hevelius - Lunar Microsatellite Mission'. The main goal of the overall mission is to place a net-lander on the far side of the Moon to perform some scientific experiments. Two different satellites have been designed to achieve this objective: a microsatellite orbiter to support the net-lander and a carrier spacecraft to transport the net-lander. An L2 Halo orbit has been selected for the orbiter in order to have a constant communication link between the landers and the Earth. The invariant manifolds of the Earth-Moon system have been used to design a low cost transfer trajectory to the L2 Halo orbit. Prior to the beginning of landing operations the carrier is parked into a frozen orbit after a WSB transfer. Finally the descent and landing phases have been designed in order to accomplish the final goals. The whole mission analysis and design process has been driven by the need for a low cost and low risk mission.