Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

A comparative assessment of different deviation strategies for dangerous NEO

Colombo, C. and Sanchez, J.P. and Vasile, Massimiliano and Radice, Gianmarco (2006) A comparative assessment of different deviation strategies for dangerous NEO. In: 57th International Astronautical Congress, 2006-10-02 - 2006-10-06.

[img] PDF (strathprints018844.pdf)
strathprints018844.pdf

Download (1MB)

Abstract

In this paper a number of deviation strategies for dangerous Near Earth Objects (NEO) have been compared. For each strategy (i.e. Solar Collector, Nuclear Blast, Kinetic Impactor, Low-thrust Propulsion, Mass Driver) a multi criteria optimisation method has been used to reconstruct the set of Pareto optimal solutions minimising the mass of the spacecraft and the warning time, and maximising the deviation. Then, a dominance criterion has been defined and used to compare all the Pareto sets. The achievable deviation at the MOID, either for a low-thrust or for an impulsive variation of the orbit of the NEO, has been computed through a set of analytical formulas. The variation of the orbit of the NEO has been estimated through a deviation action model that takes into account the wet mass of the spacecraft at the Earth. Finally the technology readiness level of each strategy has been used to compute a more realistic value for the required warning time.