Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Twenty first century standards for thermal comfort : fostering low carbon building design and operation

Tuohy, P.G. and Roaf, S. and Nicol, F. and Humphreys, M.A. and Boerstra, A. (2010) Twenty first century standards for thermal comfort : fostering low carbon building design and operation. Architectural Science Review, 53 (1). pp. 78-86. ISSN 0003-8628

[img]
Preview
PDF (strathprints018816.pdf)
strathprints018816.pdf

Download (197kB) | Preview

Abstract

Nearly 50% of energy consumed in the developed world is consumed in buildings. Despite regulation intent, many new buildings are energy profligate. Thermal comfort standards are partly responsible for this increase in consumption. In this volume, Roaf et al. have described the evolution of current comfort standards and problems inherent in buildings they shape, and have discussed two new methods of regulating thermal comfort in buildings which recognize human adaptation and have potential for reduced energy demand. These new methods incorporate adaptation through a fixed heating and cooling threshold approach (similar to Japanese Cool-Biz) or through heating and cooling setpoints calculated based on outdoor conditions(using CEN standard equations). The impact on comfort and energy demand of these new approaches is investigated for a London office building. Variables such as future climate, future building upgrades, setback temperatures, internal gains and ventilation are also explored. Adoption of the new approaches gave a 50% reduction in heating and cooling energy for the simulated office. The new approach together with optimized setback temperatures, ventilation strategies and higher efficiency equipment gives predicted heating and cooling energy demand close to zero. Recommendations for future regulation, design and operation of buildings are proposed.