Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Probabilistic learning for selective dissemination of information

Amati, G. and Crestani, F. (1999) Probabilistic learning for selective dissemination of information. Information Processing and Management, 35 (5). pp. 633-654. ISSN 0306-4573

[img]
Preview
PDF (strathprints001880.pdf)
strathprints001880.pdf

Download (221kB) | Preview

Abstract

New methods and new systems are needed to filter or to selectively distribute the increasing volume of electronic information being produced nowadays. An effective information filtering system is one that provides the exact information that fulfills user's interests with the minimum effort by the user to describe it. Such a system will have to be adaptive to the user changing interest. In this paper we describe and evaluate a learning model for information filtering which is an adaptation of the generalized probabilistic model of information retrieval. The model is based on the concept of 'uncertainty sampling', a technique that allows for relevance feedback both on relevant and nonrelevant documents. The proposed learning model is the core of a prototype information filtering system called ProFile.