Picture of scraped petri dish

Scrape below the surface of Strathprints...

Explore world class Open Access research by researchers at the University of Strathclyde, a leading technological university.

Explore

An analysis of dissipation functions in swarming systems

Bennet, Derek J. and Biggs, J.D. and McInnes, C.R. and Macdonald, M. (2010) An analysis of dissipation functions in swarming systems. In: 18th IFAC Symposium on Automatic Control in Aerospace, ACA 2010, 2010-09-06 - 2010-09-10.

[img]
Preview
PDF (Biggs_JD_&_McInnes_CR_&_Macdonald_M_-_strathprints_-_An_analysis_of_dissipation_functions_in_swarming_systems_21_Apr_2010.pdf)
Biggs_JD_&_McInnes_CR_&_Macdonald_M_-_strathprints_-_An_analysis_of_dissipation_functions_in_swarming_systems_21_Apr_2010.pdf

Download (222kB) | Preview

Abstract

Swarms of multiple, autonomous mobile agents have been shown to have advantages over single agent systems such as scalability, robustness and flexibility. This paper considers swarm pattern control using a generic artificial potential field and a range of dissipation control terms. An investigation of a number of dissipation terms to induce different swarm behaviours is undertaken. In addition, a novel dissipation control term is introduced based on time-delay feedback control. It is shown that a delayed dissipation term can induce vortex formations without knowledge of relative velocities. Finally, a stability analysis is undertaken that verifies swarm behaviour in a subset of these cases.