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Abstract

Two recent papers are considered in which solitary travelling-wave solutions to
the transformed reduced Ostrovsky equation are presented. It is shown that these
solutions are disguised versions of previously known solutions.
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Over the past two decades or so several methods for finding solitary travelling-
wave solutions to nonlinear evolution equations have been proposed, developed and
extended. The solutions to dozens of equations have been found by one or other of
these methods. References [1–3] and references therein mention some of this activity.
Unfortunately, some authors claim that their solutions are ‘new’, when the truth
is that these solutions are merely ‘old’ solutions in a different guise. Some authors
give long lists of so-called ‘new’ solutions apparently unaware that some or all of
the solutions are the same solution in disguise. Recently, in a series of enlightening
papers [4–6], Kudryashov has warned researchers and referees of the danger of not
recognizing that apparently different solutions may simply be different forms of the
same solution. He has provided numerous examples to illustrate this phenomenon.
Another recent example was given in [7]. In the present note we point out two more
examples [2,3] in which the equation under discussion is

uuxxt − uxuxt + u2ut = 0. (1)

This equation is a transformed form of the Vakhnenko equation [8] which, in turn,
is a transformed version of the reduced Ostrovsky equation [9].

Solutions to (1) may be found by use of the tanh-function method. We have done
this with minimal effort by use of the automated tanh-function method [10] which
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uses ATFM, a Mathematica package designed to take the drudgery out of applying
the tanh-function method by hand. The resulting solutions are
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and
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where �, � and x0 are arbitrary constants. The solution (2) was given by the first
equation in (3.7) in [8]. The solutions (2) and (3), with x0 = 0, were derived by
both the tanh-function method and by the ‘rational function in exp’ method in [1].
In [7] we explained why these two methods are entirely equivalent.

It is well known that for any (bounded) solution delivered by the tanh-method,
there is a corresponding (unbounded) solution with tanh replaced by coth (see [11],
for example). Hence
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are also solutions of (1).

In [2], the auxiliary-equation method was used to deliver 28 solutions, comprising
four sets of seven. The authors claim to have found ‘many new ’ solutions. First we
observe that each set of seven can be written in the same way, namely
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where " = ±1, � = �(x− �t)/2 and a1 is an arbitrary constant. Each set of seven
in [2] corresponds to a different expression for the arbitrary constant � in (6)–(12)
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above. For example, in the second set, �2
≡ −a2

1
/(6a2), where a2 < 0 is an arbitrary

constant.

It is straightforward (but tedious) to verify that the expressions for u1 and u2 may
be written as (2) and (4) respectively, with x0 given by tanh(�x0/2) = −"/3. Also
the expressions for u3 and u5 simplify to (2) with x0 = 0, and the expressions for u4

and u6 simplify to (4) with x0 = 0. The expression for u7 may be written in the form
(2) with x0 given by exp(�x0) = 2a1/3. Consequently, all 28 solution expressions in
[2] may be written in one or other of the forms (2) and (4). The authors of [2] cite
[1] so must have been aware of the solution given by (2) with x0 = 0.

In [3], application of the Exp-function method leads to two solutions that may be
written

u =
3�2b0

b1e� + b0 +
b2
0

4b1
e−�

(13)

and
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respectively, where � = �(x − �t), and b0 and b1 are arbitrary constants. In [3], it
is claimed that (13) and (14) are ‘novel’ solutions. However, we observe that with
x0 defined by exp(−�x0) = 2b1/b0, (13) and (14) may written in the form (2) and
(3), respectively.

In [3], the authors go on to consider the special case with b0 = 2b1 which corresponds
to x0 = 0; they simplify (13) and (14) to obtain

u =
3�2

1 + cosh[�(x− �t)]
(15)

and

u = −�2 +
3�2

1 + cosh[�(x− �t)]
, (16)

respectively. (The factor 3�2 was accidentally omitted in the latter solution; see (25)
in [3].) Unfortunately the authors then failed to realize that the use of the identity

1 + cosh 2� = 2 cosh2 � (17)

in (15) and (16) leads to (2) and (3) with x0 = 0. However, since they cite [1], the
authors must have been aware of the latter solutions!
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