Strathprints logo
Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Eccentric calf muscle exercise produces a greater acute reduction in Achilles tendon thickness than concentric exercise

Grigg, N.L. and Wearing, S.C. and Smeathers, J.E. (2009) Eccentric calf muscle exercise produces a greater acute reduction in Achilles tendon thickness than concentric exercise. British Journal of Sports Medicine, 43. pp. 280-283.

[img]
Preview
PDF (jsm.pdf)
jsm.pdf

Download (197kB) | Preview

Abstract

Objective: To investigate the acute effects of isolated eccentric and concentric calf muscle exercise on Achilles tendon sagittal thickness. Design: Within-subject, counterbalanced, mixed design. Setting: Institutional. Participants: 11 healthy, recreationally active male adults. Interventions: Participants performed an exercise protocol, which involved isolated eccentric loading of the Achilles tendon of a single limb and isolated concentric loading of the contralateral, both with the addition of 20% bodyweight. Main outcome measurements: Sagittal sonograms were acquired prior to, immediately following and 3, 6, 12 and 24 h after exercise. Tendon thickness was measured 2 cm proximal to the superior aspect of the calcaneus. Results: Both loading conditions resulted in an immediate decrease in normalised Achilles tendon thickness. Eccentric loading induced a significantly greater decrease than concentric loading despite a similar impulse (−0.21 vs −0.05, p<0.05). Post-exercise, eccentrically loaded tendons recovered exponentially, with a recovery time constant of 2.5 h. The same exponential function did not adequately model changes in tendon thickness resulting from concentric loading. Even so, recovery pathways subsequent to the 3 h time point were comparable. Regardless of the exercise protocol, full tendon thickness recovery was not observed until 24 h. Conclusions: Eccentric loading invokes a greater reduction in Achilles tendon thickness immediately after exercise but appears to recover fully in a similar time frame to concentric loading.

Item type: Article
ID code: 18750
Keywords: Bioengineering, Engineering (General). Civil engineering (General), Orthopedics and Sports Medicine, Physical Therapy, Sports Therapy and Rehabilitation
Subjects: Technology > Engineering (General). Civil engineering (General) > Bioengineering
Technology > Engineering (General). Civil engineering (General)
Department: Faculty of Engineering > Bioengineering
Depositing user: Ms Ashley Urie
Date Deposited: 18 Apr 2010 13:55
Last modified: 18 Jun 2015 08:42
URI: http://strathprints.strath.ac.uk/id/eprint/18750

Actions (login required)

View Item View Item