Picture of a sphere with binary code

Making Strathclyde research discoverable to the world...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. It exposes Strathclyde's world leading Open Access research to many of the world's leading resource discovery tools, and from there onto the screens of researchers around the world.

Explore Strathclyde Open Access research content

Metabolism of two new benzodiazepine-type anti-leishmanial agents in rat hepatocytes and hepatic microsomes and their interaction with glutathione in macrophages

Thi, M.D. and Grant, M.H. and Mullen, Alexander B. and Tettey, J.N.A. and Mackay, S.P. and Clark, Rachael L. (2009) Metabolism of two new benzodiazepine-type anti-leishmanial agents in rat hepatocytes and hepatic microsomes and their interaction with glutathione in macrophages. Journal of Pharmacy and Pharmacology, 61 (3). pp. 399-406. ISSN 0022-3573

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Aims to measure the metabolism and toxicity of 7-chloro-4-(cyclohexylmethyl)-1-methyl-3,4-dihydro-1H-1,4-benzodiazepine-2,5-dione (BNZ-1) and 4-cyclohexylmethyl-1-methyl-3,4-dihydro-1H-1,4-benzodiazepine-2,5-dione (BNZ-2), two new benzodiazepine analogues found to be effective against Leishmania amastigotes in vitro. The metabolism of BNZ-1 and -2 was investigated in isolated rat hepatocytes and rat liver microsomes. The toxicity of the compounds was assessed in a murine macrophage cell line by determining cell viability and reduced glutathione (GSH) content. The metabolism and toxicity of flurazepam was assessed for comparison. BNZ-1 and BNZ-2 underwent similar metabolic transformations by the liver systems, forming N-demethylated and hydroxylated metabolites, with subsequent O-glucuronidation. Flurazepam and both analogue compounds depleted macrophage GSH levels without affecting cell viability at the concentrations used (up to 100 microM), but only flurazepam inhibited glutathione reductase activity, indicating that it is acting by a different mechanism. The exact mechanism responsible for GSH depletion is unknown at present. Further experiments are needed to fully understand the effects of BNZs on the parasite GSH analogue, trypanothione, which may be a direct or indirect target for these agents. Pharmacokinetic evaluation of these compounds is required to further progress their development as potential new treatments for leishmaniasis.