Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Assessment of adhesively bonded aluminium joints by high frequency dielectric measurements

Crane, R.L. and Hayward, D. and McConnell, B. and Pethrick, R.A. and Mulholland, A.J. and McKee, S. and MacKay, C. (2005) Assessment of adhesively bonded aluminium joints by high frequency dielectric measurements. In: 37th ISTC, 2005-10-31 - 2005-11-03. (Unpublished)

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The most significant environmental factor in the degradation of adhesively bonded aluminium joints is moisture ingress. Water degrades the adhesive by plasticisation and hydrolysis, leading to failure with in the adhesive, it hydrates the oxide layer disrupting the adhesive/metal interface leading to interfacial failure. Since water is a polar material dielectric measurements are an effective means of detecting water at low concentrations. Dielectric techniques which use the aluminium adherends as the electrodes are capable of non-destructive measurement within a joint without the use of embedded sensors and if the frequencies employed are high enough (~GHz) then spatial information (~cms) on the water distribution should be available. In addition measurements over a large frequency spectrum can yield information on the interaction of the water within the adhesive, important in deducing the mechanisms by which the water diffuses through the adhesive and the interface.