Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

The eikonal approximation to excitable reaction-diffusion systems: travelling non-planar wave fronts on the plane

Mulholland, A.J. and Gomatam, J. (1996) The eikonal approximation to excitable reaction-diffusion systems: travelling non-planar wave fronts on the plane. Physica D: Nonlinear Phenomena, 89 (3-4). pp. 329-345. ISSN 0167-2789

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Exact, non-planar travelling solutions of the eikonal equation on an infinite plane are presented for the first time. These solutions are matched to produce corrugated wave fronts and patterns such as 'spot' solutions as well as extended parabolic type wave fronts. The stability of these solutions is also analysed. The variational equation which belongs to a generalised Wangerin class of differential equations is solved, first with the aid of the Liouville-Green approximation for the estimated eigenvalues characterising stability and then by a more elaborate shooting-matching method. All of the three types of travelling solutions are found to be geometrically stable. It is suggested that some of these predictions are experimentally testable.