Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Free vibrations of three-dimensional extensible marine cables with specified top tension via a variational method

Chucheepsakul, S. and Srinil, N. (2002) Free vibrations of three-dimensional extensible marine cables with specified top tension via a variational method. Ocean Engineering, 29 (9). pp. 1067-1097. ISSN 0029-8018

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

This paper presents a model formulation that can be used for analyzing the three-dimensional vibration behaviours of an inclined extensible marine cable. The virtual work-energy functional, which involves strain energy due to axial stretching of the cable and virtual work done by external hydrostatic forces is formulated. The coupled equations of motion in the Cartesian coordinates of global systems are obtained by taking into account the difference between Euler's equations and equilibrium equations. The method of Galerkin finite element is used to obtain the mass and stiffness matrices which are transformed into the local coordinate systems. Then the eigenvalue problem is solved to determine its natural frequencies and corresponding mode shapes. The model formulation developed herein is conveniently applied for the cases of specified top tension. The numerical investigations are carried out to demonstrate the validity of the model and to explore in details the influence of various parameters on the behaviours of marine cables. Results for the frequency avoidance phenomenon, maximum dynamic tension and coupled transverse mode shapes are presented and discussed.