Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

New model for vortex-induced vibration of catenary riser

Srinil, N. and Wiercigrocha, M. and O'Brien, P. (2008) New model for vortex-induced vibration of catenary riser. In: The 8th ISOPE Pacific/Asia Offshore Mechanics Symposium, 2008-11-10 - 2008-11-14.

[img]
Preview
PDF (PACOMS2008_draft.pdf)
PACOMS2008_draft.pdf

Download (535kB) | Preview

Abstract

This paper presents a new theoretical model capable of predicting the vortex-induced vibration response of a steel catenary riser subject to a steady uniform current. The equations governing riser in-plane/out-ofplane (cross-flow/in-line) motion are based on a pinned beam-cable model accounting for overall effects of bending, extensibility, sag, inclination and structural nonlinearities. The empirically hydrodynamic model is based on nonlinear wake oscillators describing the fluctuating lift/drag forces. Depending on the potentially vortex-induced modes and system parameters, a reduced-order fluid-structure interaction model is derived which entails a significantly reduced computational time effort. Parametric results reveal maximum response amplitudes of risers, along with the occurrence of uni-modal lock-in phenomenon.