Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Nonlinear multi-mode interactions in subsea risers undergoing vortex-induced vibrations

Srinil, N. and Wiercigrocha, M. and O'Brien, P. (2009) Nonlinear multi-mode interactions in subsea risers undergoing vortex-induced vibrations. In: The 19th International Offshore and Polar Engineering, 2009-07-21 - 2009-07-26.

[img]
Preview
PDF (ISOPE2009_draft.pdf)
ISOPE2009_draft.pdf

Download (3MB) | Preview

Abstract

This paper investigates nonlinear multi-mode interactions in subsea risers undergoing vortex-induced vibrations based on a computationally efficient reduced-order fluid-structure interaction model. Cross-flow responses as a result of a steady uniform current are considered. The geometrically nonlinear equations of riser motion are coupled with nonlinear wake oscillators which have been modified to capture the effect of initial curvatures of curved cylinder and to approximate the space-time varying hydrodynamic lift forces. The main objectives are to provide new insights into the vortex-induced vibration characteristics of risers under external and internal resonances and to distinguish nonlinear dynamic behaviors between curved catenary and straight toptensioned risers. The analyses of multi-mode contributions, lock-in regimes, response amplitudes, resonant nonlinear modes and curvatures are carried out and several interesting aspects are highlighted.