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ABSTRACT 

A novel reduced-order fluid-structure interaction model for 
the vortex-induced vibration of catenary riser subject to the 
ocean current is developed and systematically investigated. The 
semi analytical-numerical approach accommodates multi-mode 
nonlinear dynamic responses and accounts for the effect of 
varying initial curvature of the inclined flexible cylinder. The 
geometrically nonlinear equations of riser motion are based on a 
pinned-pinned beam-cable model with bending and extensibility 
stiffness. The empirical hydrodynamic model is based on a 
distributed van der Pol wake oscillator which approximates the 
space-time varying fluid forces. In this initial study, the 
incoming current flow is assumed to be steady, uniform, 
unidirectional and perpendicular to the riser initial plane of 
curvatures. Thus, emphasis is placed on evaluating the riser 
cross-flow responses due to fluctuating lift forces. A preliminary 
validation of model and analysis results has been performed. 
Several insights into the vortex-induced vibration of catenary 
risers are highlighted through a series of parametric studies. 
These include the characterization of single-mode vs. multi-
mode lock-in, the limitations of a single-mode solution through 
a convergence analysis which accounts for a varying number of 
considered riser modes, the prediction of riser maximum 
response amplitudes, the quantitative/qualitative behaviors of 
tension- or beam-dominant catenary risers and the overall 
influence of fluid-riser parameters. Moreover, recent industrial 
concepts of modes switching/sharing are discussed along with 
the meaningful effect of Reynolds number. 

1. INTRODUCTION 
 Ongoing deepwater applications in oil & gas industry have 
demonstrated the need to thoroughly understand the nonlinear 
dynamic behaviors of a steel catenary riser (SCR) undergoing 
vortex-induced vibration (VIV) due to the ocean current. Apart 
from the significant effects of surface waves, floating vessel 
motions and seabed interactions, VIV is thought to be the single 
most crucial factor that should be taken into account as a 
potential cause of fatigue damage for SCRs. Nevertheless, many 
insightful VIV aspects of SCRs remain unanswered. Indeed, 
through lack of a general, reliable and computationally-efficient 
fluid-riser interaction model which accounts for both inherent 
fluid mechanics and nonlinear physics of the curved flexible 
cylinders, several uncertainties take place throughout the SCR 
dynamic analysis, design and construction process, respectively. 
 The awareness of SCR technology has advanced through 
recent numerical and experimental investigations which unveil 
some meaningful VIV behaviors of SCRs (e.g., Vandiver and 
Gonzalez 1997; Hatton and Willis 1998; Lie et al. 2001, Moe et 
al. 2004; de Lima et al., 2007). In spite of this, the industrial 
VIV analysis tool is still based on an empirical science with 
some ad hoc approximations. Owing to the impractical time-
consuming 3-D flow visualizations by CFD for a long slender 
structure, the VIV fluid excitation and damping forces typically 
rely on the hydrodynamics data obtained from a laboratory 
testing of an elastically-supported rigid cylinder vibrating with 
1 or 2 degrees of freedom (DOF) in a uniform flow at a low 
Reynolds (Re) number.  
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Figure 1 Schematic model of SCR subject to a uniform current  
 

An investigation into the vortex shedding patterns and the 
fundamental 3-D wake topology for the flow past a stationary 
curved circular cylinder has been carried out by Miliou et al. 
(2003). As a result of pipe curvatures, the computational 
simulations highlight different kinds of wake characteristics 
depending on the pipe (convex or concave) configuration and 
its orientation with respect to (aligned with or normal to) the 
incoming flow. When the flow is uniform and normal to the 
curvature plane, the cross-flow wake dynamics of curved pipes 
behave qualitatively similar to those of straight pipes. This is in 
contrast to the case of flow being aligned with the curvature 
plane where wake dynamics change dramatically. For this 
reason, in this initial investigation, the current flow approaching 
the SCR is assumed to be steady, unidirectional, uniform and 
perpendicular to the curvature plane of the inclined cylinder 
(see Figure 1). This avoids the multiplicity of vortex shedding 
frequencies (e.g., the case of flow aligned with the curvature 
plane) which would complicate the modeling and analysis. 
Emphasis is placed on the cross-flow VIV due to fluctuating lift 
forces occurring solely in the SCR curvature plane with 
horizontal/vertical dynamic responses. 

This study aims to develop a numerically-robust reduced-
order fluid-structure interaction model capable of analyzing the 
nonlinear dynamic responses of SCRs subject to VIV and 
describing the associated single-mode vs. multi-mode lock-in. 
With respect to the typical riser model based on the linear 
equation of a straight tensioned-beam motion, a more realistic 
curved beam-cable (bending-extensibility) model – accounting 
for the meaningful effect of varying curvature in the static 
equilibrium of SCRs – is considered. As large dynamic 
displacements are likely to take place for slender underwater 
structures with high aspect ratios and potential multi-mode 
interactions, the effect of geometrical nonlinearities is also 
taken into account. The empirical hydrodynamic model is based 
on a nonlinear van der Pol wake oscillator model whose 
theoretical background is briefly summarized in the following. 

2. NONLINEAR WAKE OSCILLATOR MODEL 
The simplest and computationally robust means to re-

establish the hydrodynamic forcing caused by the periodic 
vortex shedding behind a rigid or elastic circular cylinder is to 
employ a phenomenological wake oscillator (see a recent 
review by Parkinson 1989; Gabbai and Benaroya 2005). 
Typically, the wake oscillator is based on the nonlinear van der 
Pol equation having a term (terms) coupled with a structural 
equation of motion such as the linear spring-mass-damping 
oscillator. Relevant parameters and coefficients are obtained by 
calibrating through experimental data. Unfortunately, the wake 
oscillator does not capture at all the flow field physics and 
almost all of the models reported in literature to date are 
restricted to the lift force governing cross-flow VIV. The 
measurement set-up is usually rearranged such that the drag 
force governing in-line VIV is negligible or uncoupled with 
cross-flow VIV. Nevertheless, the wake oscillator proves to be 
useful for describing a self-limiting nature of VIV responses 
observed by many experiments and flow visualizations. In 
addition, the lock-in or synchronization regime can be captured 
and readily ascertained (e.g., Cunha et al. 2006). 

Recently, the van der Pol oscillator for VIV has been 
revised by Skop and Balasubramanian SB (1997), Facchinetti, 
de Langre and Biolley FLB (2004) in order to overcome some 
limitations of previous wake oscillators. Both models capture 
the self-limiting amplitude responses at zero structural damping 
and reproduce some qualitative, as well as quantitative, aspects 
of VIV when compared with experiment results. Regarding the 
application to flexible cylinders, the SB model has been used in 
the analysis of single-mode cross-flow/in-line VIV of suspended 
cables (Kim and Perkins 2002) and SCRs (Srinil et al. 2008). 
The FLB model has been considered by Violette et al. (2007) 
for the cross-flow VIV of long tensioned-beam and straight 
cable (string model). They showed a good comparison with 
direct numerical simulations and experiments.  

In this study, the SB model is adapted for the multi-mode 
cross-flow VIV of SCRs. The space-time varying lift coefficient 
CL (s,t) and corresponding wake oscillator Q (s,t) are originally 
expressed as   
 

 ( ) ( ) ( )2
, , ,L N

S

C s t Q s t Y s t
γ

ω
= − ɺ ,                (1) 

( ) ( )( ) ( ) ( ) ( )2 2 2
0, 4 , , , ,S L S S NQ s t G C Q s t Q s t Q s t FY s tω ω ω− − + =ɺɺ ɺ ɺ ,    (2) 

 
in which γ is a stall parameter, CL0 is the lift coefficient of a 
stationary cylinder, a dot denotes differentiation with respect to 
time t. Herein, YN is defined as a local riser displacement 
normal to its tangential axis and s denotes arc-length coordinate 
along riser. By considering the spatially uniform flow normal to 
SCR curvature plane with a speed V, the vortex-shedding 
frequency (rad/s) in the wake (ωS) is unique such that ωS = 
2πStV/D, where D is the hydrodynamic diameter and St is the 
Strouhal number. The empirical coefficients F and G play a 
meaningful role in the overall wake-riser interaction responses. 
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Figure 2 Variation of empirical coefficients with SG parameter 

 
 Following Srinil et al. (2008), to account for the effect of 
SCR initial curvatures and to describe the concurrent horizontal 
(u) and vertical (v) displacement components of SCR in-plane 
(X-Y) motion (Figure 1), we project QX=-Qsinθ (u=-YNsinθ) and 
QY=Qcosθ (v=-YNcosθ). The space-dependent local angle θ  is 
measured clockwise from the horizontal X-axis and can be 
analytically obtained from the SCR static equilibrium analysis. 
Consequently, equation (2) entails  
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 In contrast to equation (2), above nonlinear wake oscillators 
are now dependent on both time and space variables. QX and QY 
are to be determined together with u and v, whereas CL0 is a 
given constant. The wake coefficients (F, G) are obtained by 
matching a series of experimental data which generally include 
the measurement of the maximum response amplitude of 
cylinder A/D and the vortex-to-structural frequency ratio during 
VIV (see, Skop and Balasubramanian 1997). As exemplified in 
Figure 2, F and G are dependent on the system mass-damping 
(so-called Skop-Griffin) parameter SG = ξ/µ, in which ξ is the 
modal damping of riser and µ  is the mass ratio given by 
 

( )
2

2 28 St a

D

m m

ρµ
π

=
+

,                                            (5) 

 

where ρ is the fluid density, m is the riser mass/length and ma 
denotes the potential added mass/length (ma = CAρAr, with Ar 
being the hydrodynamic cross-sectional area and CA=1).  
 It is worth remarking that, albeit capturing some effects of 
fluid and structural material properties, the SB model does not 
account for the meaningful effect of Re number as recently 
highlighted by experimental observations (Swithenbank et al. 
2008). In other words, F and G in Figure 2 are unchanged when 

varying V (Re) in a lock-in analysis (Srinil et al. 2008). To 
incorporate such Re number effect in the derivation of F and G, 
one may utilize a recent empirical formula given by Govardhan 
and Williamson (2006) which reads 

 

( ) ( )2 0.361 1.12 0.30 log 0.41ReA D α α= − + ,                          (6) 

 

where the associated mass-damping parameter is α = (m*+CA)ξ 
and the mass ratio m*= m/(πρD2/4). As an example, with SG = 
0.227 and corresponding α = 0.091, the SB model provides the 
fixed F and G equal to 0.644 and 0.489 (Srinil et al. 2008), 
respectively. By accounting for equation (6), F and G are varied 
depending on the Re number, as exemplified in Table 1. 

 
Table 1 Effect of Re number on wake coefficients 

 
Re F G 

5000 0.641 0.597 
10000 0.644 0.470 
25000 0.647 0.357 
50000 0.648 0.297 
75000 0.649 0.268 

100000 0.650 0.251 
250000 0.651 0.205 

 
It can be seen that the Re number substantially (slightly) 

affects the wake G (F) coefficient. G decreases with increasing 
Re, highlighting how the nonlinear damping effect – regulating 
the self-limiting response or limit cycle – decreases (see 
equations 3, 4). Accordingly, the maximum structural response 
amplitude is expected to increase with increasing Re. This 
insightful aspect – captured by the underlying wake oscillator 
model – provides qualitative agreement with experiment results 
and theoretical explanation (Govardhan and Williamson 2006; 
Swithenbank et al. 2008). The Re-effect on VIV responses of 
SCRs will be highlighted and discussed in Section 5. 

3. NONLINEAR EQUATIONS OF RISER MOTION 
 With reference to the global Cartesian coordinate system, 
Figure 1 displays a continuum model of arbitrarily sagged and 
inclined SCR connected from a stationary floating structure to a 
seabed with pinned-pinned supports. The steady incoming flow 
is in the Z+-direction perpendicular to the SCR plane (XY) of 
initial curvatures. A horizontal offset XH and water depth YH 
define a chord inclination angle of SCR (i.e., θr = tan-1YH/XH).  
 For convenience in the theoretical modeling which relies 
upon continuous functions, it is assumed that a 2-D submerged 
static configuration of SCR is solely due to its effective self 
weight and is described by a closed-form, hyperbolic function-
based, catenary formula (Srinil et al. 2008). The bending 
restraint and current flow action are considered to play a role 
after the completion of static equilibrium. Such neglected static 
bending is plausible as boundary conditions are pinned-pinned 
and the SCR curvatures are relatively small.   
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 By considering the SCR as a flexural elastic curved beam-
cable with the Euler-Bernoulli hypothesis, the geometrically 
nonlinear partial-differential equations of SCR in-plane motion 
about its equilibrium may be expressed in a general dimensional 
form as (Srinil et al. 2008) 
 

( )
2
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2 2 2
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in which s denotes Lagrangian coordinate, u (x) and v (y) 
represent dynamic (static) displacement in the horizontal (X) 
and vertical (Y) direction, respectively. Riser properties are 
considered to be spatially uniform, with mass (m), added mass 
(ma), structural damping coefficient (c), bending (EI) and axial 
(EAr) stiffness. T denotes axial static tension of riser and Hi 
denotes hydrodynamic forces leading to cross-flow VIV. By 
accounting for both bending and axial extensibility effects, 
equations (7, 8) are also valid for a straight top-tensioned riser 
(TTR) or a horizontal pipeline with zero sag (x = y = 0), and 
accounts for overall inertial effects through quadratic/cubic 
nonlinearities (Srinil and Rega 2007b). The effects of shear, 
torsion, seabed and internal flow-induced friction forces, which 
are quite important for SCRs, are not herein considered.  
 As the current flow is normal to the SCR plane, the cross-
flow VIV due to lift force FL corresponds to the SCR in-plane 
motion. Thus, by neglecting the tangential hydrodynamics, the 
excitation forces per unit length in equations (7, 8) read 
 

2
1

1
sin sin

2L LH F C DVθ ρ θ= − = − ,                (9) 

2
2

1
cos cos

2L LH F C DVθ ρ θ= = ,                                              (10) 

 
where CL is the lift coefficient based on equation (1) and wake 
oscillators, equations (3, 4). It is worth noting that the mean 
component of the lift coefficient, which is usually trivial for 
straight cylinders, takes place for curved cylinders (Miliou et al. 
2003). This potentially gives rise to a new SCR equilibrium 
during VIV. Yet, this aspect is omitted as attention is 
particularly paid on the fluctuating component. For convenience 
in the parametric studies, the arc-length s coordinate is 
projected onto the coordinate x which is, in the following, 
considered as a new independent parameter. The differential 
equations (3, 4) and (7, 8) are rearranged in the temporal first-
order system. Overall displacement variables, together with 
associated equations, are normalized with respect to D. 

4. REDUCED-ORDER MODEL FOR MULTI-MODE VIV 
This paper is aimed at numerically and systematically 

investigating the multi-mode VIV responses of SCRs through a 
reduced-order fluid-riser interaction model having a few DOF. 
Owing to geometrical and hydrodynamic nonlinearities, it is 
assumed that the coupled riser-wake responses contain spatial 
contributions from a certain number of modes whose natural 
frequencies are commensurable to vortex-shedding frequency. 
These modes are defined as potentially vortex-excited modes. 
The multi-mode response aspect is realistic since a slender 
continuum structure has multiple natural frequencies whose 
values are closely spaced and occasionally in a nearly integer 
ratio (e.g., 1:1, 2:1 or even 2:2:1). Consequently, by assuming a 
standing wave characteristic of marine riser responses, both 
displacement (u, v) and associated velocity (defined as Ai, Bi) 
variables in equations (3, 4) and (7, 8) are postulated through a 
series of N in-plane SCR linear modes as follow 
 

For riser dynamics, 
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For wake dynamics, 
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where φn and ϕn are horizontal and vertical displacement 
components of nth mode shape functions associated with natural 
frequencies ωn of the submerged riser. These are obtained based 
on a Fourier sine basis in conjunction with a hybrid analytical-
numerical solution of linear equations of the free undamped 
motion in (7, 8) with bending/extensibility (Srinil et al. 2008). 
In equations (11, 12), fn (dn), pn (en) are generalized coordinates 
of riser (wake) to be determined. By substituting equations (11, 
12) into (3, 4) and (7, 8), performing the standard Galerkin 
procedure with zero displacements and curvatures at end 
boundaries, and applying the orthonormalization of modes, a 
system of nonlinear coupled riser-wake equations describing the 
multi-mode lock-in (ωs ≈ ωn) is expressed as   
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(13-16) 
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in which quadratic/cubic nonlinear coefficients – accounting for 
multi-mode contributions and interactions – read    
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(17-20) 
 

 Here, a dash denotes differentiation with respect to x, k = 
(1+y′2)1/2, cr=EAr/(m+ma)D

2. Equations (17-20) are numerically 
integrated based on a 64-point Gaussian quadrature. Depending 
on the number of considered riser N modes, the total N2 (N3) 
quadratic (cubic) coefficients in each n equation are calculated 
a priori, as discussed by Srinil et al. (2009). Equation (16) 
entails N coupled van der Pol oscillators with identical vortex 
frequency ωs. They are, in turn, coupled with the nonlinear 
structural oscillators through associated p-terms. The 4N 
equations (13-16) are simultaneously solved by a numerical 
integration method with a stable time stepping and properly 
assigned initial conditions.  
 Overall, the VIV response of riser depends on mass ratio-
damping parameter, static configuration profile, modal shape 
functions, system vortex/natural frequencies, strength of fluid-
structure nonlinearities and empirical wake (F, G) coefficients. 
Through lack of actual SCR experimental data associated with 
each considered nth mode, F and G are considered to be 
constant or mode-independent (Figure 2) for a given V. Yet, 
they may be varied with varying V if one accounts for also the 
Re number effect through equation (6), as discussed in Table 1. 

5. PARAMETRIC RESULTS AND DISCUSSION 
By way of examples, both cable- and beam-dominant SCRs 

are analyzed. The riser material-geometric properties may be 
characterized by a single non-dimensional flexural-extensibility 
parameter which reads (Srinil et al. 2008) 

 

,aL T EI∆ =                                                                          (21) 
 

in which L is the SCR equilibrium length and Ta is the SCR 
tension at maximum sag. For TTRs, L is the span length and Ta 
is the uniform (or averaged) tension. ∆ describes how the 
flexural (small ∆) or axial (large ∆) rigidity plays a predominant 
role. Based on riser data provided by Srinil et al. (2008) and the 
joint industry research programme STRIDE (Moe et al. 2004), 
some associated parameters meaningful in the VIV analysis are 
given in Table 3 as SCR1 and SCR2, respectively. 

Table 2 Parameters of considered SCRs 
 

Parameters SCR1 SCR2 
∆ 272 21 

L/D 2581 835 
θr 30o 37.62o 
µ .044 .121 
ξn 1% 1% 
SG .227 .082 
α .091 .033 
cr 1.3x108 2x1010 

sag/span .082 .024 
F .644 .432 
G .489 .982 

 
Note that parameters CL0 = 0.28, γ = 0.183, St = 0.2 are 

fixed in both SCR cases. The damping ratios ξn (thus SG, F, G) 
of all considered modes are assumed to be equal since emphasis 
herein is placed on investigating the multi-mode coupling effect 
resulting from the (curved or straight) riser geometry. The 
cable-dominant SCR1 [∆ ≈ O(103)] has larger aspect ratio L/D 
(meaningful for deepwater application), sag/span and SG than 
the beam-dominant SCR2 [∆ ≈ O(102)]. 

To ascertain the occurrence of (single-mode or multi-mode) 
lock-in and predict the maximum response amplitudes when 
varying V, it is common in practice to make a reference to a 
reduced flow velocity parameter Ur which is defined by 

 
2

,r
nr

V
U

D

π
ω

=                 (22) 

 

where ωnr is the natural frequency of a reference mode whose 
value is the most commensurable to ωS (i.e., by the Strouhal law 
ωnr ≅ 2πStVav/D) for a given current flow speed Vav (e.g., the 
averaged value in the experimental laboratory or actual design). 
For a given range of Ur, the maximum and minimum V values 
are determined based on equation (22) with the chosen ωnr, 
taking into consideration also the associated Re number that 
should remain in the sub-critical range 300 < Re < 3x105 (see, 
e.g., Sumer and Fredsoe 1997). By increasing or decreasing V, 
ωS is then varied through equations (13-16).  
 
Model Validation with Shear7: Single-Mode VIV of TTR 
 Prior to investigating the multi-mode VIV of SCRs, a 
preliminary validation of the presented wake-riser modeling is 
performed by making a comparison of obtained maximum 
amplitudes (A/D) in a given Ur range [2<Ur<10] with those of 
Shear7 (v4.5, 2007), in the case of a constant-tension TTR 
subject to uniform flow. In so doing, the pinned-pinned TTR 
corresponding to SCR1 (∆=272) is considered (Table 2) with 
three damping ratios (ξ = .05, .01, .003) and thus SG (1.133, 
.227, .068). For comparison purpose, the geometric nonlinear 
terms are discarded in the time-domain analysis since Shear7 
considers the linear equation of tensioned-beam motion in the 
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frequency domain analysis. For a given Vav = 0.4 m/s (ωS = 
1.308 rad/s), the reference mode is the 4th mode (ω4=1.461 
rad/s) whose shape is anti-symmetric with respect to middle 
span, having 4 half-sine waves.  
 
Table 3 Comparison of A/D for TTR due to cross-flow VIV 

 

SG 
A/D 

This study 
Shear7 

CL-Type 1 CL-Type 2 
1.133 0.394 0.438 0.427 
0.227 1.083 1.060 0.925 
0.068 1.252 1.231 1.018 

 
 A single-mode lock-in analysis based on coupled wake-
structural oscillators is standard, exhibiting a jump phenomenon 
in the amplitude response diagram when varying Ur due to the 
hysteresis effect (Srinil et al. 2008). Herein, the predicted A/D 
values with wake oscillator and Shear 7 are quantitatively 
compared in Table 3. In addition, they are compared with 
experimental data of rigid/flexible cylinders subject to cross-
flow VIV (Skop and Balasubramanian 1997) in Figure 3 (semi-
log scale) which is the so-called Griffin plot. It is worth noting 
that, in Shear7 analysis (also ω4= 1.461 rad/s), the experimental 
lift coefficients CL-Type 1 and Type 2 of bare cylinders are both 
considered. They depend on only A/D (Type 1) or on both A/D 
and Ur (Type 2). As for the wake oscillator, the CL in equation 
(1) is thought to be equivalent to CL-Type 2 of Shear7 (albeit 
with different experiment testing) due to the fact that SB 
empirical wake coefficients depend on both A/D and Ur. 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3 Comparison of A/D with analytical tools and experiments 
 
 Overall, good qualitative and quantitative comparison of 
A/D is seen in both Table 3 and Figure 3 with different mass-
damping parameters SG. In Table 3, the Shear7 results with CL-
Type 1 provide a more conservative A/D prediction than those 

with CL-Type 2. When compared with Shear7 results, the wake 
oscillator accounts for both lower (ξ = .05) and higher (ξ = 
.003) conservative aspect, depending on the assigned SG. 
 
Nonlinear Multi-Mode VIV Responses of SCR 

To carry out the multi-mode VIV analysis, the considered 
N potentially vortex-excited modes should include the modes in 
the neighborhood of the reference mode and the latter. The 
convergence study of nonlinear responses has to be also made 
with varying N in the analysis. Herein, by considering SCR1 
and SCR2 (Table 2) with Vav = 0.4 and 1.0 m/s, the associated 
ωS values are 1.308 and 89.76 rad/s, respectively. Thus, with 
maximum N = 7, the low- or higher-order modes of interest and 
relevant natural frequencies in still water ωn (rad/s) are given in 
Table 4, with grey-filled rows denoting reference modes.  

 
Table 4 Natural frequencies of chosen VIV modes for SCRs 
 

 SCR1  SCR2 
ω2 1.033 ω7  46.770 
ω3 1.461 ω8  57.432 
ω4 1.755 ω9  69.492 
ω5 2.168 ω10  82.781 
ω6 2.228 ω11  97.439 
ω7 2.620 ω12 113.398 
ω8 2.947 ω13 130.728 

 
 Depending on the assigned initial conditions and overall 
system parameters, numerical simulations of system equations 
(13-16) are performed to determine the steady-state dynamic 
responses. Prior to evaluating the relevant A/D, it is worth 
visualizing the time histories associated with each generalized 
displacement coordinate of riser (fn), as illustrated in Figure 4 
for SCR1 with N=5 (n=2-6) and Ur = 10. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 Time series of modal displacement coordinates of SCR1 
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Figure 5 Predominant-mode time histories of riser vs. wake 
displacement coordinates 

 
 
 
 
 
 
 
 
 
 
 

Figure 6 Phase portraits of mode 5 and 6 responses 
 
 It can be seen in Figure 4 that the steady-state nonlinear 
VIV responses (i.e. the limit cycles) occur with more than one 
predominant mode. Both f5 and f6 time histories have large 
magnitude with respect to the others (f2-f4) and reveal amplitude 
modulation features as a result of modal interactions. As shown 
in Figure 5 (t=1350-1400 sec.), the associated wake coordinates 
d5 and d6 (dashed lines) also exhibit the same characteristics as 
f5 and f6 (solid lines), with the oscillating wake-riser frequencies 
being nearly tuned in a 1:1 ratio (i.e. multi-mode lock-in). The 
phase (fn-pn) portraits in Figure 6 (starting from transient to 
steady state) also confirm the periodicity of VIV responses by 
showing the closed circle orbits.  
 Numerical integration results in Figures 4-6 highlight how 
a series of n coupled wake-structure oscillators could be used in 
the analysis of multi-mode VIV in addition to single-mode VIV 
(Srinil et al. 2008). As riser responses consist of horizontal and 
vertical displacements, the resulting maximum amplitude of 
each modal coordinate (An/D) is calculated by 
 

( ) ( )2 2
/ Max ,n n n n nA D f fφ ϕ= +             (23) 

 

where maximum φn and ϕn, and fn are determined from the 
eigenfunction and time series analysis, respectively. To evaluate 
the root-mean-square (RMS) An/D, spatial maximum φn and ϕn 

remain fixed, whereas the RMS fn is determined by excluding 
the initially transient dynamics. In turn, the effective maximum 
amplitude AR/D of the riser - accounting for overall modal 
contributions and their actual relative phases in the time series 
and shape functions – is determined through equation (11).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7 Maximum response amplitudes for SCR1:  

(a) N = 3, (b) N = 5, (c) N = 7 
 
Multi-Mode Lock-In Behaviors of SCR 
 Several experimental and CFD studies have highlighted the 
multi-mode VIV of straight vertical risers (e.g. Willden and 
Graham 2004; Trim et al. 2005; Yang et al. 2008). In this study, 
the multi-mode lock-in behaviors of SCRs subject to transversal 
uniform current are parametrically investigated. The current 
velocity V is slowly increased with a small increment (.04 m/s) 
for a given Ur range. To comprehend how many DOF are 
actually needed in obtaining a robust reduced-order solution, it 
is necessary to perform a convergence study by varying the 
number of considered N riser modes. By way of examples, the 
cross-flow VIV of SCR1 (Table 2) is analyzed in Figure 7 for 
the given range 2<Ur<15. For the sake of comparison in all N 
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cases, the 3rd mode is considered as the reference mode (Table 
4), the modal damping ξ and wake coefficients (F, G) are fixed. 
The variation of modal amplitudes An/D vs. Ur is depicted in 
Figures 7a, b and c for N = 3 (n = 2-4), 5 (n = 2-6) and 7 (n = 2-
8), respectively. Moreover, the relevant effective amplitudes 
AR/D of all combined modes are plotted in Figure 8, together 
with those of the single-mode N = 1 solution (n = 3).   
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8 Effective response amplitudes for SCR1 

 
 Overall, a jump phenomenon due to hysteresis effect is 
observed in all N cases (Figure 7). This is typical because of 
using the nonlinear van der Pol oscillator (Srinil et al. 2008). 
Depending on modal shape characteristics and system 
parameters, all riser modal amplitudes reveal self-limiting 
responses (Figure 7) and entail the maximum AR/D of flexible 
cylinder in the range of 1 to 2 (Figure 8). The 7th mode provides 
the largest response with N=7 (Figure 7c). The observed 
interesting behaviors are the “switching” and “sharing” of 
modes in the VIV responses. For instance, with N = 3 in Figure 
7a, the 3rd-mode solution prevails after the jump (switching) of 
the 2nd mode solution occurs at Ur ≈ 5.6. The overlapping 
(sharing) of modal amplitudes takes place in a particular range 
of Ur as contributions from 2 (Figure 7a) or 3 (7b and 7c) 
participating modes are comparably significant. The percent 
sharing of modes may be low or high depending on the tuning 
of system natural frequencies (see Table 4). It is seen that the 5th 
and 6th modes are strongly coupled. Such modes sharing – along 
with their modal interactions – can also be seen through time 
histories as illustrated in Figure 4 with N=5 and Ur ≈ 10. The 5th 
and 6th mode responses attain their maximum states at different 
time instants. These highlight the occurrence of multi-mode 
lock-in or synchronization whereby the wake/riser oscillating 
frequencies of each generalized coordinates (fn,dn) are internally 
resonant as a nearly-perfect 1:1 ratio (see, e.g., Figure 5). 
 As regards the convergence analysis, both quantitative and 
qualitative differences are seen in Figures 7 and 8 with different 
considered N modes. The single-mode solution seems to be the 
worst case due to the fact that it cannot capture at all the multi-
mode switching, sharing and interaction features. In addition, 

the predicted AR/D values are substantially underestimated. 
With N = 3, the low reduced-order solution (Figure 7a) is 
improved, but still providing overestimated An/D results and 
broadening the overall lock-in regimes of modes 2-4, with 
respect to the cases with N=5 (Figure 7b) and N=7 (7c). The 
results converge when further increasing N. In both Figures 7 
and 8, considering N=5 in the range 2<Ur<10 is seen to be 
sufficient. To improve the solution when Ur > 10 (see the 
vertical dotted line in Figure 8) with the minimum N, 5 modes 
with n = 4-8, instead of n = 2-6, could be satisfactory. 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9 (a) Maximum and (b) RMS response amplitudes for 
SCR1 with N=5 and varying wake coefficients 

 
Influence of Reynolds number 
 It is interesting to examine the influence of Re number on 
the prediction of VIV response amplitudes. In contrast to the 
results obtained in Figures 7 and 8, the wake coefficients (F, G) 
are now varied through Equations (6) and (16) with increasing 
Ur or Re (see e.g. Table 1). The SCR1 is again considered with 
N=5 (n=2-6), and the maximum (9a) and RMS (9b) modal 
amplitude An/D results are displayed in Figure 9 in comparison 
with Figure 7b. It can be seen that stronger modal interaction 
takes place in Figure 9. Both maximum and RMS amplitude 
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response diagrams exhibit similar features, with the latter also 
showing two response peaks corresponding to the 5th mode 
solution. The maximum amplitude An/D during lock-in reaches 
the highest value about 2.6 (n=6) whereas overall RMS 
amplitudes are less than 1. The sharing of 4 modes (n=2, 4, 5, 
6) in the VIV responses is remarkable in the range 8<Ur<9. In 
particular, the 2nd modal amplitude participates into the 
response once again after it previously appears in the lower 
lock-in bandwidth (3<Ur<5) as in the case of neglected Re 
effect (Figure 7b). This 2nd mode is driven possibly due to a so-
called multiple internal resonance condition associated with 
system quadratic/cubic nonlinearities (Srinil et al. 2007). Since 
the associated natural frequencies of the 2nd (1.033) 5th (2.168) 
and 6th (2.228) modes are nearly tuned as 1:2:2 ratio, the 
nonlinear orthogonality properties of modes are not satisfied 
(Srinil and Rega 2007a), and the wake nonlinear damping 
coefficient (G) decreases with Re (Table 1), these modes 
become strongly coupled in the multi-mode VIV responses.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10 Maximum response amplitudes for SCR1 with N=5, 
varying wake coefficients and linear structural model 

 
Influence of Geometrical Nonlinearities 
 The significance of SCR geometrical nonlinearities on the 
VIV response prediction is now highlighted. By making use of 
the linear structural modeling with the summation terms in 
Equation (14) being disregarded, the cross-flow VIV of SCR1 
is again analyzed with N=5 and the predicted maximum 
amplitude results are shown in Figure 10 (linear model) in 
comparison with Figure 9a (nonlinear model). It can be seen 
that the linear model overestimates (underestimates) the 2nd and 
5th (6th) mode solutions. In addition, qualitative discrepancy 
occurs: the second lock-in bandwidth of the 2nd mode response 
disappears in Figure 10, in contrast to Figure 9a that captures 
the multiple internal resonances. Therefore, the multi-mode 
interaction observed in Figure 10 is solely due to the cubic-type 
nonlinear terms in the wake equations. To accurately evaluate 
the associated VIV fatigue damage, the predicted vibration 
amplitudes should rely on the nonlinear structural modeling.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11 Maximum response amplitudes for SCR2 with N=7 
 
High-Order Mode VIV Responses 
 The cross-flow VIV responses at higher-order (i.e. n ≥ 10) 
modes are now discussed by considering the beam-dominant 
SCR2 (Tables 2 and 4). It is worth noting that the corresponding 
natural frequencies of SCR2 (∆=21) are quite widely spaced, 
whose values are much higher than those of SCR1 (∆=272) due 
to greater bending contributions. By considering 2<Ur<8 with 
fixed wake coefficients and the 10th mode being the reference 
mode, the predicted maximum amplitudes of considered 7 
modes (n = 7-13) are depicted in Figure 11. In contrast to 
Figure 7, there is no clear jump phenomenon in Figure 11. The 
7th mode response prevails over a wide Ur range with maximum 
amplitude reaching A7/D ≈ 1.1. The relatively strong modal 
interaction occurs when Ur > 6 with higher-order multi modes 
playing a meaningful role.  To gain further insight into the 
corresponding nonlinear dynamics, the time series of all modal 
coordinates are plotted in Figure 12 with Ur ≈ 5.9 (left column) 
and Ur ≈ 7.6 (right column). It is seen that the responses of Ur ≈ 
5.9 are quite steady and periodic with 3 sharing modes (n = 7-9) 
whereas those of Ur ≈ 7.6 are unsteady, highly- modulated and 
chaotic with 5 sharing modes (n = 7-11). The VIV responses 
seem to be more fluctuating at higher Ur which involves higher-
order modes. Consequently, the multi-harmonic time histories 
of riser/wake contain many frequencies and the perfect lock-in 
or 1:1 resonant condition does not seem to occur. 
 The occurrence of unsteady, highly amplitude-modulated 
and multi-harmonic cross-flow responses of the same riser 
(SCR2) subject to uniform flow perpendicular to its curvature 
plane has been experimentally observed in the STRIDE project 
(Moe et al. 2004). Also, the measured maximum amplitude A/D 
was also in the range of 0.5-1 depending on the excited mode. 
These outcomes are in good qualitative agreement with the 
analytical prediction in Figures 11 and 12. Because SCR 
contains high modal density owing to the effect of initial 
curvatures, the multi-mode, multi-harmonic or chaotic VIV 
responses with high temporal variation are feasible.   
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Figure 12 Time series of modal displacement coordinates of SCR2 

 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6. CONCLUSIONS 
A novel reduced-order fluid-structure interaction model 

capable of analyzing the multi-mode cross-flow VIV of 
catenary riser subject to the ocean current has been developed 
and systematically investigated. The incoming flow has been 
assumed to be steady, uniform, unidirectional and perpendicular 
to the riser plane of initial curvatures. The equations of riser 
motion are based on a pinned-pinned beam-cable modeling with 
bending/axial extensibility effect and geometrical nonlinearities. 
A distributed van der Pol wake oscillator has been utilized as 
the empirical VIV forcing function and modified to interact 
spatially and temporally with the horizontal/vertical dynamic 
displacements of riser. Essentially, both structural and fluid 
models account for the effect of initial curvatures of the elastic 
inclined flexible cylinder. Depending on the number of vortex-
excited modes, a series of nonlinear coupled riser-wake 
differential equations have been derived and solved by 
numerical time integrations, with the aim of evaluating the 
associated maximum/RMS response amplitudes of riser. The 
single- and multi-mode lock-in analysis has been performed by 
varying the reduced flow velocity parameter. The fundamental 
analysis results, in the case of single-mode cross-flow VIV of a 
straight uniformly-tensioned riser, are in good agreement with 
those predicted by Shear7 and experimental data. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For catenary risers, the modal convergence study has been 

conducted by varying the number of considered planar modes. 
Results highlight both quantitative and qualitative discrepancies 
with a single-mode (or a very low DOF) solution. Depending on 
the system fluid-riser parameters, the prevalence of tension or 
bending rigidity, the relationship between vortex and natural 
frequencies and the assigned initial conditions, the multi-mode 
solution provides several insights into the VIV behaviors of 
catenary risers. These include the occurrence of multi-mode 
lock-in, switching, sharing and interaction features in the 
amplitude response diagrams. The sharing of modes in VIV is 
also observed through the associated time histories. When also 
taking into consideration the effect of Re number through the 
underlying wake oscillators, some quantitative and qualitative 
behaviors remarkably change with regard to the multi-mode 
interaction. In particular, when increasing the flow speed, the 
occurrence of multiple internal resonances between higher and 
lower modes is meaningful. This feature is associated with 
geometrical nonlinearities and thus is not captured by the linear 
structural model. Finally, the analysis of high-order mode VIV 
highlights the highly-modulated multi-harmonic responses with 
strong modal interactions. The associated time signals are 
chaotic and contain non-resonant (non-lock-in) oscillating 
frequencies with a high temporal variation. 
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In spite of making available the general reduced-order 
fluid-structure interaction model for multi-mode cross-flow VIV 
analysis of catenary risers, as well as top-tensioned risers (Srinil 
et al. 2009), subject to uniform current flow and addressing 
some interesting observations, the present modeling and 
analysis outcomes need further verification with respect to 
recent experimental testing results and industrial analytical 
tools. As regards VIV forcing function, the nonlinear wake 
oscillator and pertinent empirical coefficients need further 
improvement towards practical applications. These include the 
cases of multi-mode interaction between cross-flow and in-line 
VIV, sheared flow or flow being non-perpendicular to the riser 
plane of initial curvatures, and travelling wave characteristics 
along riser. Moreover, it is worth carrying out a new series of 
curved riser VIV experiments by also recognizing the inherent 
effect of cylinder initial curvatures, the Re number and multi-
mode dependence in VIV responses.  
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