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Abstract 

We investigate non-linear forced oscillations of sagged inclined cables under planar 1:1 internal 

resonance at avoidance. To account for frequency avoidance phenomena and associated hybrid 

modes actually distinguishing inclined cables from horizontal cables, asymmetric inclined static 

configurations are considered. Emphasis is placed on highlighting nearly tuned 1:1 resonant 

interactions involving coupled hybrid modes. The inclined cable is subjected to a uniformly-

distributed vertical harmonic excitation at primary resonance of a high-frequency mode. 

Approximate non-linear partial-differential equations of motion, capturing overall displacement 

coupling and dynamic extensibility effect, are analytically solved based on a multi-mode 

discretization and a second-order multiple scales approach. Bifurcation analyses of both 

equilibrium and dynamic solutions are carried out via a continuation technique, highlighting the 

influence of system parameters on internally resonant forced dynamics of avoidance cables. 

Direct numerical integrations of modulation equations are also performed to validate the 

continuation prediction and characterize non-linear coupled dynamics in post-bifurcation states. 

Depending on the elasto-geometric (cable sag and inclination) and control parameters, and on 

assigned initial conditions, the hybrid modal interactions undergo several kinds of bifurcations 

and non-linear phenomena, along with meaningful transition from periodic to quasi-periodic and 

chaotic responses. Moreover, corresponding spatio-temporal distributions of cable non-linear 

dynamic displacement and tension are manifested.   

 

Keywords: inclined cable, frequency avoidance, hybrid mode, forced vibration, internal 

resonance, bifurcation analysis, chaos 
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1. INTRODUCTION 

 Arbitrarily inclined and sagged cables are found in many engineering applications, often also 

integrated into large structures for specific purposes. Offshore marine cables, cable-stayed 

bridges, commuter cable-car networks, cable ski lifts and overhead transmission conductors are a 

few examples. Unfortunately, highly flexible cables exhibit inherently low structural damping; 

therefore external disturbances may easily cause a number of unexpected non-linear dynamic 

phenomena entailing cable vibration-induced problems. Therefore, dynamics engineers are often 

confronted with difficulties pertinent to such time-dependent circumstances. 

 Generally speaking, the great majority of research literature on non-linear vibrations of 

suspended cables deals with parabolic horizontal [1] or nearly taut � typically symmetric � 

inclined cables [2-6]. In numerous applications, however, this is not the case as cables can be 

suspended over great distances, thereby experiencing significant sags as well as different support 

levels. Hence, sagged asymmetric inclined cables are encountered. As a matter of fact, little 

attention has been paid to both the theoretical modeling and dynamic behavior of inclined cables. 

Large-amplitude planar/non-planar free vibrations of horizontal/inclined cables have been 

numerically studied by Takahashi and Konishi [7] and Srinil et al. [8, 9], with 1:1 or 2:1 internal 

resonance effects being highlighted in the latter. Recently, based on a general kinematic 

condensation-free modeling, non-linear finite-amplitude free dynamics of horizontal/inclined 

cables have been analytically characterized and compared [10, 11], focusing on planar 2:1 

resonances existing away from frequency crossover [12] and avoidance [13-15] regions in the 

associated frequency spectra. 

 The main objective of this paper is to investigate the effect of system asymmetry due to 

sagged inclined configurations on non-linear planar forced oscillations of inclined cables. 

Particular attention is placed on hybrid modal interactions due to a nearly-tuned 1:1 internal 

resonance of avoided-crossing (veering) frequencies. From both a theoretical and practical 

viewpoint, frequency avoidance phenomena � together with the coexisting hybrid modes � are 
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actually concerned with planar dynamics, distinguishing inclined cables from horizontal cables 

that exhibit crossover phenomena of symmetric/anti-symmetric frequencies. Experimental 

investigations have also evidenced the occurrence of frequency avoidance [16, 17], hybrid 

modes and specific features of modal interactions in inclined cables [17]. Within the framework 

of vibration suppression, Xu and Yu [18] have found that frequency avoidance may cause a 

dramatic reduction in modal damping ratios supplied by external dampers locally attached to 

inclined stay cables. On the contrary, the mode localization theory � which is associated with 

frequency avoidance � may be somehow applied to realize a passive control of vibration 

propagation in structures [19]. This disadvantageous/advantageous relevance is the reason why it 

is of great practical significance to fully understand the non-linear forced dynamic behavior of 

avoidance cables, with respect to the well-known crossover cables [1]. 

 The paper is organized as follows. Section 2 presents the approximate planar model of an 

elastic inclined cable and the associated non-linear equations of motion accounting for overall 

displacement coupling and dynamic extensibility [10]. The key solution of sagged inclined 

configurations, based on a cubic space polynomial, is underlined, since it entails the system 

asymmetry from which linear frequency avoidances and associated hybrid modes are originated. 

Based on a multi-mode Galerkin discretization and a second-order multiple scales approach, 

coupled amplitude-dependent solution due to primary external and 1:1 internal resonances is 

summarized in Sect. 3. Depending on the elasto-geometric parameter, significant contributions 

of hybrid or asymmetric, also non-resonant, modes associated with quadratic nonlinearities are 

discussed in Sect. 4 for different avoidance cables. By means of frequency- and force-response 

diagrams, local bifurcation studies of steady- and dynamic-state solutions are performed in Sect. 

5, showing the influence of system parameters on resonant dynamics. Several meaningful non-

linear phenomena are highlighted via direct numerical integrations of modulation equations, and 

the space-time varying distributions of non-linear dynamic displacement and tension are 

examined. The paper ends with some concluding remarks. 
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2. GOVERNING EQUATIONS 

 In a fixed Cartesian co-ordinate system, Figure 1a displays an elastic simply-supported 

suspended cable with arbitrary angle θ of inclination. Keeping the horizontal span XH fixed, the 

vertical span YH is varied to attain a desired inclination, and the horizontal component H of cable 

static tension is adjusted to attain a desired cable sag value d. The planar static configuration y(x) 

is attained under influence of gravity g, with x being the space variable, whereas the coupled 

planar dynamics are described by the horizontal u and vertical v displacements measured from 

the static equilibrium at point x and time t. Here, the cable is driven by a uniformly-distributed 

vertical harmonic excitation, i.e., F(x, t) = FcosΩt, with F and Ω being the amplitude and 

frequency of excitation, respectively. In the following, a prime (dot) expresses differentiation 

with respect to x (t). To facilitate the parametric study, the following dimensionless variables are 

introduced: 

                                  , , , , , ,
H H H H H H C

x y d u v t gH
x y d u v t

X X X X X X w
= = = = = =% %% % % %              

                   , , , ,CH H
H

C

wX XEA gH
c c F F X

H H w H gH
α = = = Ω = Ω% %%                                 (1) 

 

in which E is the Young�s Modulus, A the uniform circular cross-sectional area, wC the self-

weight per unit unstretched length, c the coefficient of linear viscous damping. Based on the 

assumptions of small axial deformation and moderately large vibration amplitudes, the 

extensional space-time dependent axial strain, neglecting the effects of torsional, flexural and 

shear rigidities, is expressed, through the Lagrangian approximation, as [10] 

            ( )2 2

2

1 1
.

1 2
de u y v u v

y

 ′ ′ ′ ′ ′≈ + + + ′+  
                                              (2) 

 Due to the strain energy of cable non-linear stretching, the approximate non-linear partial 

differential equations describing forced damped planar vibration of inclined cables read [10] 

( ) ( ) ( )2 2 2 3 2

3 3 3

1
,

2 2
u c u u u y v u y u v u v u u v

α α αρ ρ
ρ ρ ρ

′  ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ = + + + + + + + +  
  

&& &        (3)   
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( ) ( ) ( )2 2 2 2 2 3

3 3 3
cos ,

2 2

y
v c v v y u y v u v y v u v u v v F t

α α αρ ρ ρ
ρ ρ ρ

′′  ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ = + + + + + + + + + Ω  
  

&& &

 

in which 21 yρ ′= + . Zero displacements at boundaries are considered and the tilde notation is 

omitted for brevity. Accounting for overall inertia effect [20], this system � besides revealing 

geometrically quadratic and cubic nonlinearities due to cable sag and axial stretching � explicitly 

captures the interaction of u and v dynamic amplitudes.  

 Solving the relevant static problem with moderate sag assumption [10], the key closed-form 

solution for static inclined configuration � that is, in non-dimensional form y = tanθ + z � is 

obtained, up to cubic order of x, through [12] 

             ( ) ( ) ( )21 *
1 1 1 2 * ,

2 6
Z x x x O

ε ε ≈ − + − + 
 

                                (5) 

in which ( )secC HZ z w X Hθ=  and * sinC Hw X Hε θ=  are dimensionless parameters. It is 

worth mentioning that, by accounting for the asymmetry to first order of the small parameter *ε , 

the ensuing inclined profile is no longer parabolic or symmetric. As verified by numerical 

solution of the exact static equation [10], Eq.(5) is valid even if the values of sag-to-span ratio d 

are somewhat greater than the limiting value (1:8) of parabolic profile. Thus, with respect to the 

parabolic configuration commonly considered also in inclined cables literature [2-5], this 

straightforward solution provides a greater sag range useful in several engineering applications.  

 Based on assumed sine-based series, the linear eigenvalue problem of free undamped motion 

of Eqs.(3)-(4) is solved by the Galerkin method, yielding system eigenfrequencies and 

eigenfunctions of coupled u and v displacements [10] which depend on the elasto-geometric 

inclined cable parameter [13, 14] 

                     ( )22 3cosC aw S EA Tλ θ= ,                          (6) 

where S is the cable equilibrium length and Ta the static tension at the cable point where the local 

inclination angle is approximately equal to θ.  

(4) 
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 In Fig.1b, frequency avoidance phenomena are illustrated by loci of the lowest four planar 

frequencies plotted versus λ/π for the inclined cable with θ = 30
o
. It is seen that, as λ/π (as well 

as cable sag) slowly increases, two loci progressively approach each other at λ/π  ≈ 2, 4 and so 

on, thereafter abruptly diverging from each other. The coexisting (r, s) modal shapes are 

essentially hybrid (asymmetric) at avoidances due to a mixture of symmetric/anti-symmetric 

modes, as exemplified in Fig.2 for θ = 30
o
 and 45

o
. According to linear theory, dynamic tensions 

of such hybrid modes are substantially high [14], in contrast with the corresponding crossover 

cables which exhibit trivial (non-trivial) dynamic tensions of the coexisting anti-symmetric 

(symmetric) modes [12]. To describe sensitivity to system asymmetry, the nearness to avoided-

crossing frequencies is achieved by varying the non-zero detuning parameter governing the 1:1 

resonance (see Sect. 5). 

 To analytically treat the temporal problem, Eqs. (3) and (4) are cast in state-space (first-order) 

form [21]. By accounting for the orthonormality properties of linear eigenfunctions, the derived 

equations are projected onto the infinite-dimensional eigenbasis by letting 

              
1 1

,  ,J J J J
m m m m

m m

U f V pζ ζ
∞ ∞

= =

= =∑ ∑              (7) 

in which J=1, 2, U
1
=u, U

2
=v, V

1
=u& , V

2
= v& , 1

m mζ φ= , 2
m mζ ϕ= , fm and pm being the unknown 

displacement and velocity coordinates associated with both the horizontal (φm) and vertical (ϕm) 

shape functions of the m mode. The Galerkin method is then applied, thereby leading to the 

infinite set of non-linearly coupled ordinary differential equations: 

      
2

1 1 1 1 1

0,    

2 cos ,

m m

m m m m m mij i j mijk i j k m

i j i j k

f p

p p f f f f f f Z tµ ω
∞ ∞ ∞ ∞ ∞

= = = = =

− =

+ + = Λ + Γ + Ω∑∑ ∑∑∑

&

&
         (8)                   

for m = 1, 2,�, ∞, wherein ωm is the m natural frequency. The modal damping and external 

forcing terms read 

1 1

2 2

0 0

2 ( ) ,   m m m m m mc dx Z F F dxµ ρ φ ϕ ρϕ= + = ϒ =∫ ∫ , respectively.   



 7

 Note that, for crossover cables, the associated Zr (Zs) is always trivial (non-trivial) 

corresponding to the coexisting rth anti-symmetric (sth symmetric) mode, whereas for inclined 

cables at avoidances Zr and Zs are never trivial owing to the relevant hybrid (asymmetric) modes. 

The quadratic and cubic non-linear coefficients governing (m, i, j, k) overall displacement 

coupling are given, respectively, by [10] 

1

3

0

1 3 1 3
,

2 2 2 2
mij m i j i j i j m i j i j i j

y
y y dxα φ φ φ φ ϕ ϕ ϕ ϕ φ φ φ ϕ ϕ ϕ

ρ
′    ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′Λ = − + + + + +    

    
∫              (9) 

     ( ) ( ){ }
1

3

0

1
.

2
mijk m i j k i j k m i j k i j k dx

α φ φ φ φ φ ϕ ϕ ϕ φ φ ϕ ϕ ϕ ϕ
ρ

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′Γ = − + + +∫                                      (10) 

 

 

3. ASYMPTOTIC SOLUTION OF NEARLY-TUNED 1:1 INTERNAL RESONANCE  

 Periodic solution to Eq. (8) is determined using the method of multiple scales for a weakly 

non-linear response. The second-order asymptotic analysis is considered, capturing the combined 

effect of quadratic and cubic nonlinearities. With ε denoting a small bookkeeping parameter, the 

damping µm and excitation Zm amplitude are ordered such that they balance with the non-

linearity and internal resonance at the same cubic order, i.e., µm → ε2µm and Zm → ε3
Zm. In 

condition of primary external and 1:1 internal resonances, the relevant frequency relationships 

are quantified as Ω = ωs + ε2σf and ωs = ωr + ε2σ, in which σf and σ are external and internal 

detuning parameters, respectively. Here, the external resonance of a high-frequency s mode is 

considered, whereas a low-frequency r mode is internally excited. It is worth noting that around 

avoidance it is always σ > 0 since ωs > ωr (Fig.1b). This is in contrast with cables at crossovers 

where σ  may change sign when considering primary resonance of a symmetric mode.  

 Following Srinil and Rega [20], who consider 1:1 (as well as 2:1) resonant interactions at 

crossovers and highlight the effects of kinematic condensation on forced vibrations of shallow 

horizontal cables, the real-valued modulation equations governing the slowly-varying amplitudes 

(ar, as) and relative phases (γr, γs) of the two interacting hybrid modes, in polar form, read 
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( )

3 2 2

1 2 3

2 3 2 23
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sin sin sin 2 sin
,

8 8 8 2

cos 3 cos cos 2 cos
,

8 8 8 8 8 2

s s r s r r r
r r r

r r r r

rs r s s s r s rrr r r r
r r f r

r r r r r r

K a K a a K a a Z
a a

K a a K a K a a K a aK a Z
a a
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ω ω ω ω

γγ σ σ
ω ω ω ω ω ω

∆ ∆ ∆
= − + + + +

∆ ∆ ∆
= + + + + + + +

&

&

 

2 23

1 32
sin sin 2 sinsin

,
8 8 8 2

r s r s s sr
s s s

s s s s

K a a K a a ZK a
a a

γµ
ω ω ω ω

∆ ∆∆
= − − − − +&

3 2 2 23

1 32
3 cos cos 2 coscos

,
8 8 8 8 8 2

ss s rs s r r s r s s sr
s s f s

s s s s s s

K a K a a K a a K a a ZK a
a a

γγ σ
ω ω ω ω ω ω

∆ ∆∆
= + + + + + +&      (11-14) 

 

in which γr = (σf +σ)t - βr, γs = σf t - βs, and ∆  = γr - γs. In turn, the second-order non-linear 

interaction coefficients � accounting for infinite-dimensional series of resonant (quadratic/cubic) 

and non-resonant (quadratic) modes (nonlinearities), governing the internal resonance activation 

(i.e., K1-3) and controlling the solution convergence [20, 21] � are expressed as: 

 

( ) 2 2 2
1

2 1
3 ,

4
hh hhm hmh mhh hhhh

m m m h

K
ω ω ω

∞

=

  
= Λ + Λ Λ + + Γ  −  

∑  h = r, s                  

( ) ( ) ( )
( ) ( )

( )

2 22 2 2
1

2 1 1

          2 ,

mss
rs rrm rmr rsm rms mrs msr

m m m s r m s r

rssr rsrs rrss

K
ω ω ω ω ω ω ω

∞

=

  Λ = Λ + Λ + Λ + Λ Λ + Λ + 
 − + − −   

+ Γ + Γ + Γ

∑

( ) ( ) ( )
( )1 22 2 2

1

,
4

ssm sms mrs msrmss
srm smr sssr ssrs srss

m m s m s r

K
ω ω ω ω ω

∞

=

 Λ + Λ Λ + ΛΛ
= Λ + Λ + + Γ + Γ + Γ 

− − −  
∑      

( )2 2 2 2
1

2 1
3 ,

4
srm smr mrr srrr

m m m r

K
ω ω ω

∞

=

  
= Λ + Λ Λ + + Γ  −  

∑       

( ) ( ) ( )
( )3 22 2 2

1

.
4

srm smr mrs msrmrr
ssm sms srrs srsr ssrr

m m r m s r

K
ω ω ω ω ω

∞

=

 Λ + Λ Λ + ΛΛ
= Λ + Λ + + Γ + Γ + Γ 

− − −  
∑                (15-19) 

 Due to non-linear orthogonality of symmetric/anti-symmetric eigenfunctions, all quadratic 

and cubic coefficients embedded in K1 and K2 systematically vanish for crossover cables [20], 

whereas they exist for avoidance cables involving hybrid (asymmetric) eigenfunctions. In spite 

of this difference, (nearly tuned) 1:1 resonances are activable near both crossovers and 

avoidances due to the non-trivial K3 and K1-3, respectively.  

 In view of system Eqs.(11)-(14) and (15)-(19), it is worth drawing a general description of 

possible 1:1 resonant solutions for inclined (avoidance) vs. horizontal (crossover) cables, in 
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comparison with other planar internal resonance cases governed by the corresponding 

modulation equations [20-22]. Depending on the cable parameter λ/π (Eq. 6), the activated (1:1, 

2:1, 3:1) internal resonance and the primary resonance of either a high-frequency (s) or low-

frequency (r) mode, comparison of uncoupled-mode (UC) or coupled-mode (C) solutions for 

different (non-) crossover/avoidance cables is summarized in Table 1. Whilst both UC and C 

solutions coexist for 1:1 resonant crossover cables (since K1, K2 = 0), only C solution exists for 

avoidance cables (since K1-3 ≠ 0), actually regardless of the mode being directly excited. This is 

in agreement with the analysis of other asymmetric systems [24]. As for 2:1 [20] and 3:1 [22] 

resonances, both horizontal/inclined cables exhibit UC and C (only C) solutions when directly 

exciting a high-frequency (low-frequency) mode. This implies that 2:1 and 3:1 (1:1) solution 

kinds do (do not) depend on the mode being directly excited, while they do not (do) depend on 

the cable geometry being symmetric or asymmetric.  

 Thus, the modification from crossover to avoidance � as well as from purely symmetric/anti-

symmetric to hybrid modes � in linear dynamics significantly makes planar 1:1 resonant forced 

non-linear dynamics of inclined (asymmetric) cables different from horizontal (symmetric) 

cables. This is a major reason why investigating 1:1 resonant avoidance cables versus 1:1 

resonant crossover cables is of theoretical and practical significance.  

 Mention must be made that if one considers inclined � but still parabolic or symmetric � 

cables exhibiting symmetric/anti-symmetric modes, like done � to the best of our knowledge - in 

all previous analytical studies [e.g., 2-5], one would obtain the same solution classes as of 

horizontal cables, which also include the theoretically unrealizable UC solutions. Nonetheless, 

actual activation of also a non-planar internal resonance to be analyzed with the full 3-D model 

[10] may occur near avoidances (crossovers). Involving an out-of-plane mode, it would entail a 

more general classification of non-planar vs. planar solutions than that in Table 1. Yet, this is 

beyond the scope of this paper, where dealing with only the constrained planar model is 

sufficient to extract the substantially planar different features of horizontal and inclined cables. 
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 To deal with stability issue, it is preferable to consider the Cartesian-form modulation 

equations, in place of Eqs. (11)-(14). By introducing the transformations 2 2 1/ 2( )i i ia p q= +  and 

1tan ( ),i i iq pγ −=  where i = r or s, one arrives at  

          

2 2 2 32 3

1

2 2 2 2

2 3

( ) ( )( )
( )

8 8 8

( 2 3 ) ( 2 )
      ,

8 8

r s r s s s sr r r
r r r f r rr rs

r r r

s r s r r s r s r s s r s r

r r

q p q q p q qp q q
p p q K K K

q p p q p q q p q p q p q q
K K

µ σ σ
ω ω ω

ω ω

+ ++
= − − + − − −

+ + − −
− +

&

              (20) 

         

2 2 3 23 2

1

2 2 2 2
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( ) ( )( )
( )

8 8 8

(3 2 ) ( 2 )
      ,

8 8 2

r s r s s s sr r r
r r r f r rr rs

r r r

r s r r s r s s r s s r s r r

r r r

p p p q p p qp p q
q q p K K K

p p p q q q p p p p q q q p Z
K K

µ σ σ
ω ω ω

ω ω ω

+ ++
= − + + + + +

+ + + −
+ + +

&

            (21) 

           

2 3 2 2 2 2

1

2 22 3

2 3

( ) ( ) ( 2 3 )

8 8 8

( 2 )( )
       ,

8 8

s s s s r s r r s s s r r s
s s s f s ss rs

s s s

r s s r r r sr r r

s s
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p p q K K K

p q p q p q qp q q
K K
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ω ω ω

ω ω
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= − − − − −

− −+
− +
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 (22) 

          

3 2 2 2 2 2

1

2 23 2

2 3

( ) ( ) (3 2 )

8 8 8

( 2 )( )
       .

8 8 2

s s s s r s r s r s s r s r
s s s f s ss rs

s s s

r s r r s r s sr r r

s s s

p p q p p p q p p p q q q p
q q p K K K

p p p q q q p Zp p q
K K

µ σ
ω ω ω

ω ω ω

+ + + +
= − + + + +

+ −+
+ + +

&

(23) 

 

 Both fixed-point (equilibrium) and dynamic (limit cycles) responses can be evaluated based 

on this four-dimensional coupled system. Accounting for the multimode expansion, the space-

time varying coupled forced dynamic configurations associated with the u (J=1) or v (J=2) 

displacement component of a 1:1 resonant inclined cable are expressed, up to second order, as 

[20] 

   

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2

, cos cos

cos 2 2 cos 2 21
          ,

2 cos 2 cos

J J J

r r r s s s

J J J J

s s ss ss r r rr rr

J J

s r r s rs r s rs

U x t a t x a t x

a t x x a t x x

a a t x x

γ ζ γ ζ

γ ψ κ γ ψ κ

γ γ ψ γ γ κ

≈ Ω − + Ω − +

    Ω − + + Ω − + +     
 

 Ω − − + −   

    (24)              

 

in which the pertinent second-order coefficients, governing spatial displacement corrections due 

to quadratic non-linear effects of all resonant/non-resonant modes, are given by    

               ( ) ( )2 2
1,

,
4

J Jmhh
hh m

m m h

x xψ ζ
ω ω

∞

=

 Λ
=  − 

∑   ( ) ( )2
1

,J Jmhh
rr m

m m

x xκ ζ
ω

∞

=

Λ
= ∑       h = r, s                      

        ( ) ( )2 2
1,

,
( )

J Jmrs msr
rs m

m m s r

x xψ ζ
ω ω ω

∞

=

 Λ + Λ
=  − + 

∑   ( ) ( )2 2
1 ( )

J Jmrs msr
rs m

m m s r

x xκ ζ
ω ω ω

∞

=

 Λ + Λ
=  − − 

∑ .          (25)  
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4. CABLE PARAMETERS AND INTERACTION COEFFICIENTS  

 Because the gap between the two avoided-crossing frequencies in cable spectrum increases at 

higher avoidance (i.e., at higher sag range) for a fixed inclination θ (see Fig.1b for θ = 30
o
), or 

alternatively, it increases with θ for a fixed avoidance range [8, 14], nearly-tuned 1:1 resonant 

cables with θ = 30
o
 or 45

o
 at the first two avoidances (λ/π ≈ 2, 4) are investigated. Following 

[20], fixed values of XH = 850 m, A ≈ 0.1159 m
2
, wC ≈ 9.48 kN/m and E = 1.794x10

8
 kN/m

2
 are 

considered. Based on assumed 40 terms of sine-based series in linear dynamics, the parameters 

(α, d) and frequencies (ωr, ωs), for λ/π ≈ 2 (θ= 30
o
, 45

o
) and λ/π ≈ 4 (θ = 30

o
) are given in Table 

2, whereas the corresponding orthonormalized (u, v) shape functions are depicted in Fig.2. 

 The monochrome bar charts in Fig.3 schematically show percent contributions of each 

resonant/non-resonant mode to the second-order quadratic coefficients embedded in Krr, Kss, Krs, 

K1, K2 and K3 (Eqs. 15-19). By accounting for the first 10 and 15 modes through the Galerkin 

projection (Eq. 7), Figures 3a and 3b (3c) correspond to the first (second) avoidance with θ = 30
o
 

and 45
o
 (θ = 30

o
), respectively. In turn, the ensuing effective coefficients accounting for overall 

contributions of quadratic and cubic nonlinearities are reported in Table 3. 

 Even though all inclined cables have small values of sag-to-span ratio d, less than 1:8 [12], 

Figure 2 reveals qualitative features of resonant hybrid (asymmetric) modes since the cubic 

asymmetric static configuration (Eq.5) has been considered. It is also seen that the u (v) modal 

component in the fixed Cartesian co-ordinate system plays an increasing (decreasing) role as θ 

increases for a fixed λ/π = 2. In view of Fig.3, all charts highlight significant contributions of 

both resonant (encircled) and non-resonant (lower and/or higher-order) modes for 1:1 resonant 

avoidance cables, confirming the companion analysis of 1:1 (2:1) resonant crossover (non-

crossover/non-avoidance) cables [20] ([11]).  

 As a matter of fact, each quadratic modal contribution, which gives rise to either a positive or 

negative coefficient correction, depends on overall contributions of (i) elasto-geometric 
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parameter and static configuration, (ii) modal characteristics of horizontal/vertical displacements 

(e.g., Fig.2), and (iii) system frequency commensurability [11]. Some or all of these factors also 

affect the outcomes of cubic coefficients embedded in Eqs.(15)-(19) and second-order shape 

functions given by Eq. (25). For θ = 30
o
, the second-avoidance cable which involves higher-

order (r = 3, s = 4) hybrid modes requires a higher order modal truncation (up to m ≈ 9) in Fig.3c, 

than the first-avoidance cable in Fig.3a (up to m ≈ 5), due to the increased sag effect [11]. 

 In contrast with a 1:1 resonant first-crossover cable whose non-trivial contributions of non-

resonant anti-symmetric modes (m = 4, 6,...) to Krs or K3 are negligible [20], the 1:1 resonant 

first-avoidance cables in Figs.3a (θ = 30
o
) and 3b (θ = 45

o
) reveal meaningful contributions of 

the m = 4 mode to Krs, though with a different sign. This occurs, on the one side, due to the high 

modal density of asymmetric resonant/non-resonant shape functions entering Krs through, e.g., 

Λrsm (see Eq.9); on the other side, due to the associated frequency factor, whose order of 

magnitude is, in general, O(10
-2

)-O(10
-4

), becoming as higher as O(1) for 2 21 ( ( ) )m s rω ω ω− +  

with m = 4, since ωm ≈ 2ωs ≈ 2ωr. The latter also warns about possible activation of a multiple 

planar internal resonance [11]. Yet, regardless of the frequency factor, the solely effects of 

asymmetric modal contributions of non-resonant modes may still play a remarkable role: see the 

K3 contributions of 3
rd

 and 5
th

 modes in both Figs.3a and 3b, as well as contributions of 2
nd

, 5
th

 

and higher-order modes in Fig.3c for the second-avoidance cable.  

 In Table 3, overall comparison of the effective coefficients reveals quantitative as well as 

qualitative differences in the non-linear contributions (values and/or sign) to different avoidance 

inclined cables. This circumstance affects in a variable way the ensuing non-linear dynamics and 

stability under given control parameters, as highlighted in the following. 
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5. NON-LINEAR DYNAMIC RESPONSES AND PHENOMENA 

 Using the continuation technique [23], the non-linear forced responses of nearly-tuned 1:1 

resonant inclined cables are now obtained based on Eqs. (20)-(23). The fixed-point solution is 

evaluated by the Newton-Raphson method and the dynamic (limit cycle) solution is evaluated by 

the multiple shooting application. Upon quasi-statically varying a control parameter (σf, F) 

within a small incremental and adaptive step-size, the stability of fixed points is examined based 

on eigenvalues of the relevant 4x4 Jacobian matrix, whereas that of limit cycles is based on 

Floquet multipliers. Depending on initial conditions, the dynamic solution is investigated by 

direct numerical integrations of Eqs.(20)-(23). Here, we utilize the fourth-order Runge-Kutta 

scheme with stable time step equal to .0001 and other tools including phase-plane projections, 

Fourier power spectral density (PSD) and Poincarè maps (sampled at each forcing period) to 

characterize specific responses after decayed transient states. Note that the numerical simulation 

is herein solely aimed at characterizing dynamic solutions upon continuation bifurcation 

predictions. Should one be interested in validating the reduced-order models embedded in the 

perturbation solution, simulations should affect the original partial-differential Eqs.(3)-(4) 

governing the actual non-linear system. 

 As described in Sect. 3, only coupled as-ar (directly-indirectly excited) mode solution exists 

in 1:1 resonant avoidance cables, and σ > 0 is realized. Throughout the analysis, small damping 

coefficients c are chosen such that µr = .005 and µs = .006. Solid lines indicate stable fixed points, 

whereas dashed or dotted lines indicate unstable fixed points due to a saddle-node (SN) or a 

Hopf (HF) bifurcation, respectively. The latter plays a crucial role in the onset of periodic, quasi-

periodic and chaotic responses. Filled (open) symbols, e.g., circles, triangles or squares, indicate 

stable (unstable) limit cycles of amplitudes and phases.  

 

5.1 Bifurcation Analysis with Influence of Parameters 
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 With θ = 30
o
, σ = .04 and F = .002, Fig.4 compares frequency-response curves of ar and as 

amplitudes for first- (a-d) and second-avoidance (e-f) cables. To illustrate the effect of canceling 

the indirect forcing term, we put ϒr = 0 in Figs.4c and 4d, with respect to others that fully 

account for non-trivial ϒr and ϒs. Overall, the responses exhibit two coupled-mode solutions 

isolated from each other: the main one (B1) entirely spanning the frequency σf range with 

predominant ar amplitudes, whereas the other one (B2) exhibiting the so-called frequency island 

phenomenon and coexisting in a particular range left to the zero-σf axis, with predominant as 

amplitudes. This feature occurs regardless of the actual differences in values and/or sign of non-

linear coefficients between first- and second-avoidance cables (Table 3), and of whether ϒr being 

zero. From a stability viewpoint, it is worth distinguishing that, due to SN bifurcations, the 

unstable portions of B1 branch have one positive real eigenvalue of the Jacobian matrix, whereas 

those of B2 branch may have one or two positive real eigenvalues. 

  For first avoidance cable with non-zero ϒr and ϒs (Figs.4a, 4b), up to 7 (three stable and four 

unstable) fixed points may coexist and a pair of Hopf (HF1, 2 or HF3, 4) bifurcations occur in each 

branch, though with a marginal range of ensuing dynamic solutions. These dynamic 

characteristics differ from those of the corresponding 1:1 resonant crossover cable [20] where the 

B1 and B2 branches merge together, giving rise to both uncoupled- and coupled-mode responses, 

with the latter being originated from the former via pitchfork bifurcations and with Hopf 

bifurcations being found only in the coupled-mode branch. Considering ϒr = 0 in Figs.4c and 4d 

mainly affects the jump (hysteresis) phenomena in B1 branches, with the SN points being shifted 

with respect to those in Figs.4a and 4b when sweeping σf up or down. Moreover, up to 5 (two 

stable and three unstable) fixed points may coexist. It is worth mentioning that coupled-mode 

responses and frequency islands have recently been documented in [24], which considered 1:1 

resonant imperfect beams at first avoidance with primary resonance of a low-frequency mode 

and surprisingly accounted for some cases with ϒs = 0 and a physically unrealistic value (σ =0) 
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of internal detuning. Therein, only a single Hopf bifurcation has been shown to occur. For the 

sake of completeness, we consider both ϒr and ϒs ≠ 0 in the subsequent analysis. 

 For second avoidance cable (Figs.4e and 4f), overall ar and as responses become smaller and 

the B2 branch considerably shifts to the left boundary of the considered σf range: this implies 

that the hybrid modal interaction role is solely played by the main B1 branch around nearly 

perfect primary resonance.  

 Keeping all parameters unchanged, significant qualitative differences occur in Figs.5a and 5b 

for first-avoidance cable with higher θ =45
o
, with respect to Figs.4a and 4b. In particular, overall 

jump phenomena occur through turning points in a smaller σf range (-.075,.075) and there are 3 

Hopf bifurcations: both HF1, 2 are still found in the main B1 branch, whereas a single HF3 is 

found in the B2 island along with a connection of unstable foci and saddles (having two positive 

real eigenvalues). Both isolated solutions entirely overlap each other, with meaningful ranges of 

two unstable foci coexisting in a particularσf range nearly centered at the zero-σf axis. 

Depending on initial conditions, in this case up to 5 (three stable and two unstable or two stable 

and three unstable) fixed points may coexist. 

 To gain insight into dynamic interactions, the solution emerged from each HF point is traced 

out in Figs.5c (ar) and 5d (as), which reveal individual routes of continuation results. All HF1-3 

bifurcations occurring at σf  ≈ -.01176, .02837, -.00105, respectively, are of super-critical type 

because the born limit cycles are stable. Interestingly, all dynamic solution branches highlight 

how they lose stability via period-doubling (PD1-3) bifurcations (at σf ≈ -.0074, .0236, .0027), 

each of which having one critical Floquet multiplier that crosses the unit circle at -1 [23]. Such 

PD bifurcations pave the way to quasi-periodic or chaotic oscillations, depending on given σf 

values and initial conditions (see Sect. 5.2).  

 With reference to Figs.4 and 5 (a, b), it is now of interest to obtain the responses by varying 

F. To also appreciate the internal detuning σ effect, we consider σ = .04 and .08 for θ = 30
o
. 
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With σf = 0, the obtained ar and as amplitudes are displayed in Figs.6a and 6b, respectively. 

Again, it is found that two isolated (B1, B2) branches take place in all cases, with ar (as) 

amplitudes predominating in the B1 (B2) branch. All fixed-point B1 solutions lose and gain 

stability via HF bifurcations at low (HF1) and higher (HF2) forcing F amplitude, respectively. As 

regards B2 branch, there exists a single HF for cable with θ = 45
o
, in accordance with the 

corresponding B2 curves in Figs.5a and 5b, whereas there is no HF bifurcation for cable with θ = 

30
o
, which, instead, experiences SN points for all σ cases. As σ increases for θ = 30

o
, the range 

of B1 unstable foci substantially increases and the B2 fixed points take place at a higher F 

amplitude. The latter implies that, for perfect external resonance, only the B1 solution does exist 

in the low F range for a greaterσ.  

 By focusing on the cable with θ = 30
o
, Figs.7a (ar) and 7b (as) highlight the σ effect on B1 

dynamic solution starting from the two HF points in Figs.6a and 6b. Qualitative differences 

regarding the solution stability occur when increasing σ. For σ = .04, the HF2 (HF1) at F 

≈ .002446 (.000486) is of sub-critical (super-critical) type, and the relevant stable solution 

(triangle) loses stability via cyclic-fold (CF) bifurcation when increasing F (≈ .004437) Thus, the 

dynamic solution jumps to the associated stable fixed-point in Fig.6. For σ ≈ .08, both the HF1 

and HF2 shifted to higher F (≈ .000975 and .007571) are of super-critical type. The 

corresponding dynamic solution (circle) branches are isolated from each other: the stable one 

emerged from HF2 terminating shortly after decreasing F (≈ .007341), whereas the other one 

emerged from HF1 losing stability via PD bifurcation at F ≈.002013. When further increasing F, 

the latter undergoes a reverse PD bifurcation at F ≈.006378, where the dynamics is re-stabilized, 

and the continuing response grows monotonously afterwards, with ar increasing by a rate greater 

than as. Thus, for both σ values, one observes simultaneous existence of stable fixed-point and 

periodic response for the same B1 solution, apart from a transition to chaos possibly existing 

between the two PD points.  
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5.2 Periodic, Quasi-Periodic and Chaotic Responses 

 Direct numerical integration results � validating the continuation prediction and showing rich 

non-linear dynamics after HF and PD bifurcations � are now presented. Along the branch 

starting from HF2 in Figs.5c and 5d, a sequence of PD responses leading to chaos is highlighted 

by the pr-qr phase portraits in Fig.8, where σf is slowly decreased (σf = .025→.02235) with fixed 

initial conditions corresponding to the PD2 solution at σf =.02357, i.e., (pr, qr, ps, qs) = (-.0013251, 

-.0002848, .00113897, .00077433). It is seen that as the limit cycle (Fig.8a) experiences two-

cycle (Fig.8b), four-cycle (Fig.8c) and multiple-cycle (Fig.8d) closed loops generated by 

consecutive PD bifurcations, the last trajectory undergoes a chaotically-modulated response at σf 

= .0225 (Fig.8e), thereby giving rise to aperiodic time histories. Further slightly decreasing σf 

(Fig.8f), transient chaos appears and then the orbit undergoes a likely boundary crisis, where the 

chaotic set is destroyed and the post-bifurcation state suddenly escapes to the bounded fixed-

point B1 solution (Figs.5a, 5b).   

 A route to chaos via PD is also detected when continuing the solution from HF1 with a slow 

increment in σf. By assigning (pr, qr, ps, qs) = (-.0007886, -.0002589, .0009279, .0006741) of 

PD1 solution (σf = -.00735) as initial conditions, the pr-qr and ps-qs phase planes which exhibit a 

funnel-shaped chaotic attractor [25] at σf = -.004812 are shown in Figs.9a and 9b. The associated 

Poincarè ar-as section, calculated for about 20,000 periods, reveals a collection of points 

spreading out over the limited region in Fig.9c. Increasing σf thereafter, a crisis occurs at σf =      

-.004312 and the resulting response ends up with a stable fixed point of the overlapped B2 

branch in Figs.5a and 5b. 

 Qualitative differences occur regarding the route to chaos when continuing the dynamic 

solution from HF3 of B2 branch in Figs.5c and 5d. Since neither fixed point nor periodic stable 

solutions take place in the region between PD3 (σf = .00269) and the saddle node (SN*,σf 

= .01032) of B1 branch, one would expect either quasi-periodic or aperiodic response, depending 
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on initial conditions. By initiating with the PD3 solution (pr, qr, ps, qs) = (.0001610, .0005058,      

-.0027938, .0014901) and slowly increasing σf towards σf ≈ .0035, the ensuing non-linear time 

(p-q) histories exhibit intermittently chaotic outbursts, as shown in Fig.10. Thus, the PD3 

bifurcation may be of sub-critical type, and the ensuing intermittency may be of type III (on-off 

intermittency) [25]. Applying the same initial conditions and varying σf further, the non-linear 

dynamics may be quasi-periodic as well as chaotic. The occurrence of quasi-periodic motion is 

exemplified by the time histories and Poincarè map of ar-as amplitudes in Fig.11 for σf = .006. 

Figures 11a and 11b highlight multi-frequency responses, whereas Fig.11c exhibits a closed-loop 

map. Of course, when σf meets a critical value, a crisis finally occurs (σf ≈ .011) and the 

response jumps to the stable fixed point of B1 branch. Thus, the observed sudden changes in 

non-linear response via crises may lead to switching between dynamic and equilibrium solutions 

of two overlapping branches.  

 Examples of PSD corresponding to qs responses in Figs.8d, 8e, 9 and 11 are shown in 

Figs.12a-d, respectively. The PSD of Fig.12a illustrates how, when period doubling takes place, 

the dominant sharp peak and its sub-harmonics simultaneously occur along with their integer 

multiples, justifying the multiple closed-loop orbit in Fig.8d. On the contrary, due to chaotically-

modulated oscillations (Figs.8e, 9), the PSDs of Figs.12b and 12c highlight a major spike 

associated with the excitation frequency and many side-banding components distributed 

continuously over a broad frequency band with high density. Differently, the PSD of Fig.12d 

exhibits many harmonics whose frequencies are not commensurate in perfectly integer ratios, 

e.g., one being 1.33 between the first two dominant (high- and low-frequency) peaks. This 

confirms how the response in Fig.11 is quasi-periodic. 

 Dynamic insight into 1:1 resonant interactions are now discussed through the force-response 

diagrams in Fig.7. No chaotic motion is found when varying F for σ = .04. In other words, either 

periodic or quasi-periodic response with variable time-modulated amplitudes and phases is 

attained. On the other hand, for σ = .08, the chaotic vibration is found in the range between the 
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two PD bifurcations. With initial conditions of the first PD (F = .002), i.e., (pr, qr, ps, qs) =          

(-.0001368, -.0000259, .0006552, .0005225) and with increasing F from .0015 to .00244, the 

relevant phase-plane plots of pr-ps projection are shown in Figs.13a-13d, which exhibit a cascade 

of seemingly PD bifurcations (as checked via PSDs) together with a considerable increment in 

size of the trajectories. The chaotic response takes place at F ≈.0025 and dominates over a wide 

F range. As an example, Fig.13e shows the chaotic response at F = .003 whose non-periodic 

amplitudes are significantly large. Thus, one must worry about substantial induced dynamic 

tensions in the cable. When increasing F, another crisis may occur prior to F=.006378 

corresponding to the second PD, with the chaotic response becoming quasi-periodic, see, e.g. 

Fig.13f for F=.0055, since no stable fixed point coexists (Fig.6).  

 The coexistence of slightly different attractors at a given value of F is highlighted in Fig.14 

through ps-qs phase planes (Figs.14a, 14b) and ensuing Poincarè ar-as sections (Figs.14c, 14d). 

With F=.007, two sets (I, II) of initial conditions (pr, qr, ps, qs) are considered in numerical 

integrations for the cable in Fig.7 with σ = .08: set I corresponding to the unstable B1 fixed point 

at F=.006 (-.0026334, .0000658, .0005957, .0001496) in Figs.14a and 14c, and set II 

corresponding to the stable periodic solution from HF1 at F = .0074 (-.0012781,                  

-.0001358, .0000670, .0009374) in Figs.14b and 14d. It is shown that both the extent and 

duration of amplitude modulation are different between Figs.14a and 14b. Whilst the Poincarè 

map of the former (Fig.14c) exhibits a three closed-loop orbit, that of the latter (Fig.14d) 

provides a single closed-loop one. The relevant PSD of qs in Figs.15a (I) and 15b (II) show two 

dominantly incommensurate frequencies, highlighting how they are both quasi-periodic. Yet, the 

former reveals also the sub-harmonic components of the three closed-loop orbit in Fig.14c. 

 

5.3 Non-linear Dynamic Displacements and Tensions 

 Space-time distributions governing steady and chaotically-modulated dynamic displacements 

and tensions due to 1:1 resonant interactions are now highlighted. Depending on the obtained 
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amplitudes (ar, as) and phases (γr, γs), the second-order (u, v) coupled dynamic deflections are 

constructed through Eq. (24), whereas the relevant dynamic tensions (Td = EAed) are evaluated 

based on displacement gradients through the strain ed in Eq. (2). The Td value is normalized with 

respect to the associated maximum static tension TH.  

 The first comparison of steady responses is illustrated in Fig.16 for first-avoidance cables 

having different stable fixed points. With σ = .04, F = .002, and σf = -.02, the u, v and Td/TH 

responses of B1 solution of cable with θ = 30
o
 (Figs.4a and 4b) are visualized in Figs.16a-16c, 

whereas those of B1 and B2 solution of cable with θ = 45
o
 (Figs.5a and 5b) are visualized in 

Figs.16d-16f and 16g-16i, respectively, over a half period of harmonic excitation. Here, empty 

(filled) circles indicate the initial (half-period) responses. With regard to the B1 solution, the 

cable responses with θ = 30
o
 (Figs.16a, 16b) and 45

o
 (Figs.16d, 16e) qualitatively agree for the u 

and v asymmetric profiles exhibiting predominance of the indirectly-excited r mode (see Fig.2) 

according to the fact that the ar amplitudes (.00210, .00134) are significantly greater � by an 

order of magnitude � than the as amplitudes (.00019, .000475) for both θ (30
o
, 45

o
). In addition, 

there is no sign difference in the corresponding phases of the two cables: (γr, γs) ≈ (-.12268, 

1.21083) for θ = 30
o
, whereas (γr, γs) ≈ (-.29196, .30159) for θ = 45

o
. As the dominant ar 

decreases as θ increases, the spatially asymmetric feature of Td/TH responses due to strain 

variation effect is more significant with θ = 30
o
 than with θ = 45

o
, and also entails larger time 

excursions of Td/TH magnitudes. 

 With respect to B1 responses, the associated B2 (frequency-island) responses of cable with θ 

= 45
o
 in Figs.16g and 16h exhibit a sign difference in relative phases (γr ≈ -.79040, γs ≈ -.69213) 

and the predominance of the directly-excited s mode because of the as amplitude (.00347) being 

now much greater than the ar one (.0006). Accordingly, the second-order spatial corrections from 

resonant and non-resonant (higher-order) modes are seen to be significant due to quadratic non-

linear effects (Sect. 4), thereby leading to essentially multi-mode responses. Apart from the 
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induced Td/TH responses being greater, both spatial and temporal variations of 

tensile/compressive forces are considerably important. 

 Next, the comparison of two coexisting periodic and chaotic responses is shown in Fig.17 for 

cable with θ = 45
o
. With σ = .04, F = .002, and σf = .0225, either the steady-state amplitudes 

(phases) of stable B1 solution (Figs.5a and 5b) or the chaotically modulated amplitudes (phases) 

based on numerical integrations of modulation equations (Fig.8e) are considered. The associated 

periodic and non-periodic (u, v, Td/TH) responses are depicted in Figs.17a-c and 17d-f, 

respectively, the latter being recorded during the interval t ≈ 211.2-216.2 (about 5 periods of 

excitation) with 0.1 being the time increment.  

 Unlike the θ = 45
o
 case with σf = -.02 (Figs.16d, 16e), the steady u and v responses with σf 

= .0225 (Figs.17a, 17b) exhibit the predominant s-mode profiles because as (.001156) is greater 

than ar (.000252), with γs ≈ -.23094 vs. γr ≈ - .05332. This highlights how, depending on the 

control parameter, one given solution (e.g., B1) may, of course, be dominated by either the 

directly- or indirectly-excited mode. On the contrary, the multi-modal asymmetric spatial 

responses become evident when the cable experiences chaos, as shown in Figs.17d and 17e. 

Since the varying ar, as amplitudes may have the same order of magnitude (e.g., ar≈.002121, 

as≈.001437 at t ≈ 212.3), from a modal superimposition viewpoint contributions from the two 

resonant modes are comparatively important, with also meaningful second-order spatial 

corrections from all retained modes. Consequently, in Fig.17f, the induced dynamic 

tensile/compressive forces are outstandingly increased, with the associated non-periodic non-

uniform spatial distribution, whereas in Fig.17c, the small-amplitude responses show rather 

spatially-uniform dynamic stresses. Thus, in cable design, one has to worry about possibly 

chaotic 1:1 resonant oscillations. 
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6. CONCLUSIONS 

 Non-linear planar forced oscillations of elastic sagged inclined cables due to 1:1 internal 

resonance of hybrid modes at avoidances have been investigated. The cable is subjected to a 

uniformly-distributed vertical harmonic excitation with primary resonance of a high-frequency 

mode. Approximate non-linear equations of motion account for the asymmetry of inclined 

sagged configurations, overall displacement coupling and dynamic extensibility. Based on a 

multimode expansion and second-order multiple scales solution, analysis of modulation 

equations governing the planar 1:1 � vs. 2:1 or 3:1 � resonant interactions of horizontal/inclined 

cables allows us to highlight how the modification from crossover to avoidance � as well as from 

purely symmetric/anti-symmetric to hybrid modes � in linear dynamics significantly makes 1:1 

resonant forced non-linear dynamics of inclined (asymmetric) cables different from horizontal 

(symmetric) cables. In turn, the modal analysis of quadratic non-linear coefficients highlights 

significant contributions of both resonant and non-resonant (asymmetric) modes to 1:1 resonant 

asymptotic solutions. 

 Bifurcation analysis provides information about a multiplicity of (stable/unstable) 

equilibrium and periodic solutions, as well as meaningful transitions from periodic to quasi-

periodic and chaotic responses. Essentially, isolated coupled-mode solution branches coexist 

with frequency islands, experiencing saddle-node and Hopf bifurcations. Limit cycles may 

undergo cyclic-fold as well as direct/reverse period-doubling bifurcations. Overall results 

highlight the influence of cable inclination and internal resonance detuning on non-linear 

dynamic behavior of avoidance cables and the effect of cable sag at higher avoidance. Direct 

numerical integrations validate the continuation prediction and characterize post-bifurcation 

dynamics. Depending on system control parameters and initial conditions, a whole cornucopia of 

non-linear phenomena are observed: viz., sequences of period-doubling bifurcations leading to 

chaos, funnel-shaped chaos, on-off intermittency mechanism, and sudden switching of solutions 

via boundary crises, with the competing effect of dynamic solutions also taken into account. 
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 Depending on resonant amplitudes, non-linear dynamic displacements and tensions illustrate 

the predominance of either the indirectly- or directly-excited asymmetric mode, along with some 

higher-order spatial corrections. Spatial dynamic deflections associated with chaotically resonant 

vibrations exhibit multi-mode features with significant time-varying amplitudes. As a result, the 

chaotic dynamics are endowed with remarkable asymmetry of spatially non-uniform, strongly 

time-varying, tensile/compressive dynamic tensions. 
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Table 1 

 

horizontal (sym.) cables inclined (asym.) cables 
s:r  λ/π  n 

Ω = ωs+ε 
nσf Ω = ωr+ε 

nσf Ω = ωs+ε 
nσf Ω = ωr+ε 

nσf 

1:1 

 

CR vs. AV 2 UC/C  UC/C C  C 

2:1 CR vs. AV 

Non-CR vs. Non-AV 

 

1 UC/C C UC/C C 

3:1 Non-CR vs. Non-AV 2 UC/C C UC/C C 
UC (C):    Uncoupled-mode (Coupled-mode) solution. 

CR (AV): Crossover (Avoidance). 

 

 

 

 

 

 

 

 

Table 2 

 

λ π  θ α d r, s ωr ωs 

2 30
o 

738.802 .041 1, 2 5.694 5.958 

2 45
o
 907.707 .062 1, 2 5.072 5.489 

4 30
o
 1168.626 .065 3, 4 11.415 11.804 

        

 

 

 

 

 

 

 

 

Table 3 

                                

θ = 30
o
 θ = 45

o
 

K
 

λ π  ≈ 2 λ π  ≈ 4 λ π  ≈ 2 

Krr 18,431.010 2,919,187.945 -7,812.204 

Kss 101,728.107 -480,020.584 63,702.183 

Krs -450,390.519 -10,629,041.605 -582,906.364 

K1 254,518.048 -7,991,366.439 103,897.379 

K2 289,082.594 -5,376,948.755 135,892.499 

K3 -218,734.377 -3,022,752.641 -95,349.086 

 

 




