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Abstract This paper presents direct numerical simulation and validation of analytical prediction 

of the finite-amplitude forced dynamics of suspended cables. The main goal is to complement 

analytical and numerical solutions, accomplishing overall quantitative/qualitative comparisons of 

nonlinear response characteristics. By counting on an approximate, kinematically non-condensed, 

planar modeling, a simply-supported horizontal cable subject to a primary external resonance 

and a 1:1 (or 1:1 vs. 2:1) internal resonance is analyzed. To obtain analytical solutions, a second-

order multiple scales approach is applied to a complete eigenfunction-based series of nonlinear 

ordinary-differential equations of damped forced cable motion. Accounting for weakly 

quadratic/cubic geometric nonlinearities and multiple modal contributions, local scenarios of 

cable uncoupled/coupled responses and associated stability are predicted, based on chosen 

reduced-order models. As a cross-checking tool, direct numerical simulations of associated 

nonlinear partial-differential equations describing the high-dimensional, multi-degree-of-

freedom, system dynamics are carried out using a finite difference technique employing a hybrid 

explicit-implicit integration scheme. Based on system control parameters and initial conditions, 

cable space-time varying nonlinear responses of amplitudes, displacements and tensions are 

numerically assessed, thoroughly validating the analytically predicted solutions as regards actual 

existence, meaningful role and predominating internal resonance of coexisting/competing 

dynamics. Some methodological aspects are noticed, along with an insightful discussion on 

kinematically approximate/exact and planar/non-planar cable modeling. 

 
Keywords suspended cable, direct numerical simulation, analytical prediction, reduced-order 

model, internal resonance, nonlinear forced vibration 
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1.  INTRODUCTION 

 Numerous research contributions have witnessed a diverse interest in geometrically nonlinear 

dynamics of suspended cables, with several attempts to build a reliable theoretical framework for 

investigating such distributed-parameter systems with quadratic and cubic nonlinearities [1]. As 

closed-form exact solutions capturing the actual nonlinear dynamics cannot be sought for, most 

of the analytical investigations have been accomplished based on some a priori hypotheses 

concerned with the elasto-geometrical and kinematic modeling, the mechanical equations of 

motion governing structural vibrations, the spatial or temporal dependence of dynamical 

solutions, and the initial phase-space conditions leading to particular attractors. For qualifying 

the richness and variability of cable nonlinear dynamic characteristics under different external 

and/or internal (auto-parametric) resonances, the perturbation-based multiple scales (MS) 

approach has largely been developed and applied to a crudely- or properly-reduced set of 

ordinary-differential equations (ODEs) of motion [2-9] or to the original system of partial-

differential equations (PDEs) [2-6].  

 To avoid some or nearly all of the aforesaid hypotheses, direct computational treatments of 

the approximate [7, 8] or exact [10, 11] PDEs of cable motion have recently been accomplished 

based on a space-time finite difference (FD) procedure confronting the finite-amplitude free 

vibration problems of sagged and arbitrarily inclined cables with/without internal resonances. In 

the meantime, several FD-based implementations have been used successfully to deal with a 

range of problems in nonlinear forced vibrations, including cables subject to random excitation 

[12], highly-extensible cable mechanics [13], low-tension cables with large displacements [14] 

or semi-active vibration control strategies [15]. Overall, the robustness, utility and versatility of 

FD algorithms have been evidenced. 

 However, as far as nonlinear dynamics of infinite-dimensional systems are concerned, little 

attention has been paid to direct numerical simulation of PDEs validating the analytical 

prediction of ODEs. Yet, this is a crucial aspect from both a theoretical and practical point of 
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view because, when the system involves a large set of parameters due, e.g., to an internal 

resonance condition, the analytical approaches often fail to capture features of actual nonlinear 

dynamics, owing to the low-dimensional framework and several constraining assumptions. On 

the other hand, in addition to the prohibitive calculation costs, the accuracy of direct numerical 

simulation may be occasionally questionable for higher-dimensional systems, particularly in the 

applications where space-time varying behaviors are not easily traced out. Thus, both analytical 

and direct numerical solutions are of mutual significance, and relying upon solely one of them 

may entail incomplete or unreliable knowledge of system response. 

 Abhyankar et al. [16] analyzed simply-supported beams subject to a sinusoidal loading and 

showed a favorable comparison of chaotic responses between numerical FD (PDEs) and 

analytical (ODEs) solutions. Essebier and Baker [17] used spatial FDs and Runge-Kutta time 

integration of the ensuing ODEs to obtain undamped forced/unforced flexural responses against 

known analytical solutions of cantilever beams. For Euler-Bernoulli beams resting on a nonlinear 

elastic foundation and subject to primary/sub-harmonic resonances, Abe [18] showed that the 

shooting analysis of ODEs is superior to the MS analysis of associated PDEs, in comparison 

with FD analysis of PDEs. As far as cable nonlinear resonant oscillations are concerned, Gattulli 

et al. [19] used analytical and finite element discretized models of ODEs to show some superior 

ability of the latter in capturing higher modal contributions. In turn, based on PDEs governing 

undamped unforced planar vibrations, Srinil and Rega [8] have numerically checked the validity 

of some analytical reduced-order models for various horizontal/inclined sagged cables. 

 This paper aims at systematically comparing direct numerical simulations and analytical 

predictions of nonlinear forced dynamics of suspended cables. The main goal is to complement 

analytical/numerical solutions, achieving overall quantitative and qualitative comparisons of the 

associated response characteristics. In this framework, to reduce the analytical/computational 

effort, reference is made to the simpler 2-D cable model, well knowing how it can be 

questionable to the aim – herein not pursued – of adequately describing the overall 3-D response 
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scenario. The paper is organized as follows. In Sect.2, approximate nonlinear PDEs vs. ODEs of 

planar motion of a simply-supported suspended cable subject to primary external and 1:1 or 2:1 

internal resonance are summarized. Analytical and numerical solutions of ODEs and PDEs based 

on MS and FD methods, respectively, are presented. By focusing on horizontal cables at so-

called crossovers in the natural frequency spectrum [20], Section 3 shows the analytical 

predictions provided by properly reduced-order models [8, 9], by means of frequency-response 

curves. The influence of several control parameters is illustrated. Depending on response 

amplitudes, spatial nonlinear uncoupled/coupled dynamic configurations are analytically 

constructed and further utilized as displacement initiations in Sect.4, where direct FD 

simulations of PDEs are performed, determining steady-state, multi-degree-of-freedom, 

responses. Various cases of 1:1, or 1:1 vs. 2:1, resonant modal interactions are numerically 

investigated to validate the analytical methodology and outcomes, as well as the pros and cons of 

approximate cable planar modeling. Section 5 summarizes the analyses and concludes the paper. 

 

2.  CABLE MODEL AND SOLUTION METHODS 

 Let us consider nonlinear planar damped forced vibrations of a simply-supported horizontal 

cable subject to a uniformly-distributed vertical harmonic excitation (Fig.1a). It is assumed that 

such continuous cable is linear elastic, and has moderate (low) dynamic (static) extensibility, 

negligible torsional, bending and shear rigidities. In a Cartesian X-Y coordinate frame, the small-

sagged static equilibrium y(x) under gravity g force is suitably described by a parabola [20] 

around which the cable oscillates with synchronous longitudinal u(x,t) and vertical v(x,t) 

displacements, x (t) being the spatial (temporal) independent variable. In the following, the 

space-related (time-related) variables are non-dimensionalized with respect to cable span XH 

( /H CX w gH ), with H being the horizontal component of cable static tension and wC the self-

weight per unit unstretched length. A prime (dot) represents partial differentiation with respect to 

non-dimensional position (time).  
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2.1 Nonlinear Partial/Ordinary Differential Equations of Motion 

 With homogeneous boundary conditions, u(0, t) = u(1, t) = v(0, t) = v(1, t)= 0, approximate 

PDEs governing finite-amplitude, damped forced, planar motion about equilibrium of suspended 

cables, in non-dimensional form, read [9] 

( ) ( ) ( )2 2 2 3 2
3 3 3

1 ,
2 2

u c u u u y v u y u v u v u u vα α αρ ρ
ρ ρ ρ

′  ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ = + + + + + + + +  
  

&& &              (1, 2)      

( ) ( ) ( )2 2 2 2 2 3
3 3 3 cos ,

2 2
yv c v v y u y v u v y v u v u v v F tα α αρ ρ ρ

ρ ρ ρ

′′  ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ = + + + + + + + + + Ω  
  

&& &

 

where 2 1/ 2(1 ) ,yρ ′= + α = EA/H, with EA being the cable axial stiffness, c the viscous damping 

coefficient, and F (Ω) the variable amplitude (frequency) of harmonic excitation.  

 Equations (1-2) couple both u and v dynamics with parabolic equilibrium, i.e., 

4 (1 ),y dx x= − in which d is a cable sag-to-span ratio [20], capture geometrically quadratic/cubic 

nonlinearities due to cable initial curvature and axial deformation, and are valid for both (zero 

sag) strings and arbitrarily inclined (asymmetric) cables [21]. It is necessary emphasizing that, in 

contrast with the unique integro-partial differential equation of v motion typically considered in 

cable literature based on the quasi-static stretching assumption [1-6], this kinematically non-

condensed system explicitly accounts for longitudinal inertia and space-time varying dynamic 

tension [9]. To be generic, we keep herein exact ρ values throughout Eqs.(1-2) in the subsequent 

analyses, whereas ρ ≈1 in the associated linear terms in [9]. 

Casting Eqs.(1-2) in state-space form and using the orthonormality properties of linear 

eigenfunctions, the derived equations are then projected onto a full eigen-spectrum by letting 

1 1
,  ,J J J J

m m m m
m m

U f V pζ ζ
∞ ∞

= =

= =∑ ∑  J=1-2, U1=u,U2=v,V1=u& , V2= v& , 1
m mζ φ= , 2

m mζ ϕ= , with fm (pm) 

being the unknown displacement (velocity) coordinates of both u (φm) and v (ϕm) shape functions 

of the m mode of frequency ωm, obtained via a sine-based series [7]. The Galerkin projection is 

applied, thereby giving rise to a complete infinite-dimensional set of ODEs, 
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   2

1 1 1 1 1
0,    2 cos ,m m m m m m m mij i j mijk i j k m

i j i j k
f p p p f f f f f f Z tµ ω

∞ ∞ ∞ ∞ ∞

= = = = =

− = + + = Λ + Γ + Ω∑∑ ∑∑∑& &     (3)                  

for m=1, 2,…,∞, wherein ( )
1

2 2

0

2 m m mc dxµ ρ φ ϕ= +∫  and
1

0

 m mZ F dxρϕ= ∫  are modal damping and 

forcing terms. Expressions of the quadratic (Λ) and cubic (Γ) nonlinear coefficients, accounting 

for overall u and v modal shape contributions, can be found in [9]. In the following, we 

summarize the analytical MS solution for the nonlinear temporal behavior of ODEs (3), along 

with the numerical FD solution directly attacking the PDEs (1-2). 

 

2.2 Multiple Scales Solution with 1:1 or 2:1 Internal Resonance 

 We pay our attention to the enhancing coupling effect due to planar internal resonances at 

meaningful crossovers [20]. To also highlight the influence of cable sag – as well as different 

features of mixed modal interactions – both first- and second-crossover horizontal cables are 

considered, the former exhibiting 1:1 resonance of first symmetric/anti-symmetric modes, 

whereas the latter exhibit 1:1 (2:1) resonance of second symmetric/anti-symmetric (second 

symmetric/first anti-symmetric) modes. To determine weakly nonlinear periodic responses and 

associated local stability, Eq.(3) is analyzed based on a second-order multiple scales (MS) 

approach capturing the slow variation of amplitudes and phases of uncoupled/coupled responses 

due to (higher-order) quadratic and cubic nonlinearities, damping and external/internal resonance 

effects [9]. With ε denoting a small bookkeeping parameter (which is finally taken as 1), the 

damping µm and excitation Zm amplitudes are ordered such that they appear at the same ε3 order, 

i.e., µm → ε2µm and Zm → ε3Zm, in all resonance cases. In particular, the symmetric (s) mode is 

the directly excited mode with Zs≠0, whereas the corresponding anti-symmetric (r) mode is the 

internally-resonant driven mode. The relationships of primary external and 1:1 internal 

resonances are quantified through Ω =ωs + ε2σf, ωs = ωr + ε2σ, whereas those of primary external 

and 2:1 internal resonances read Ω = ωs + εσf, ωs = 2ωr +εσ, with σf and σ being external and 

internal detuning parameters, respectively.   
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 The general approximate closed-form second-order solution of coupled forced damped 

dynamic configurations associated with both the u (J = 1) and v (J = 2) components for a 1:1 

internally resonant cable is expressed as [9] 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 2

, cos cos

cos 2 2 cos 2 21          ,
2 cos 2 cos

J J J
r r r s s s

J J J J
s s ss ss r r rr rr

J J
s r r s rs r s rs

U x t a t x a t x

a t x x a t x x

a a t x x

γ ζ γ ζ

γ ψ κ γ ψ κ

γ γ ψ γ γ κ

≈ Ω − + Ω − +

    Ω − + + Ω − + +     
 

 Ω − − + −   

    (4) 

whereas that for a 2:1 internally resonant cable reads [9] 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

2 2

, cos cos
2 2 2

cos 2 2 cos
1          .3 3 1 1 1 12 cos cos

2 2 2 2 2 2

J J Js r
r r s s s

J J J J
s s ss ss r s r rr rr

J J
s r s r rs s r rs

tU x t a x a t x

a t x x a t x x

a a t x t x

γ γ ζ γ ζ

γ ψ κ γ γ ψ κ

γ γ ψ γ γ κ

Ω ≈ − − + Ω − + 
 

    Ω − + + Ω − − + +    
     Ω − − + Ω − +          

 (5) 

 Here, γr = (σf +σ)t - βr, γs = σf t - βs in Eq.(4), whereas γr = σt - 2βr +βs, γs = σf t - βs in Eq.(5), 

with βr (βs) being the phase of associated ar (as) amplitude. In addition to the first-order 

superimposition of resonant ( , )J J
r sζ ζ modal functions with their correlated phases (e.g., Figs.1b, 

c), the spatial displacement distributions in both Eqs.(4) and (5) further depend on second-order 

shape functions assembling quadratic nonlinear effects of every retained resonant/non-resonant 

mode via ,J J
ij ijψ κ  [6]. Similarly, second-order uncoupled dynamic configurations due to the 

solely primary resonance of symmetric mode can be extracted from Eq.(4) or (5). Meaningful 

temporal dependence and variation of second-order uncoupled (as) and coupled (ar-as) 

amplitudes plus their relative phases (γr, γs) are enforced through the ensuing four-dimensional 

modulation equations [9], viz., for a 1:1 resonant modal interaction, 

                             ( )2 sin 2 2
,

8
s r r s

r r r
r

Ka a
a a

γ γ
µ

ω
−

= − +&                    (6) 

          ( ) ( )223 cos 2 2
,

8 8 8
s r r srs r srr r

r r f r
r r r

Ka aK a aK aa a
γ γ

γ σ σ
ω ω ω

−
= + + + +&             (7) 

            ( )2 sin 2 2 sin ,
8 2

r s r s s s
s s s

s s

Ka a Za a
γ γ γµ

ω ω
−

= − − +&              (8) 
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           ( )23 2 cos 2 2 cos ,
8 8 8 2

r s r sss s rs s r s s
s s f s

s s s s

Ka aK a K a a Za a
γ γ γγ σ

ω ω ω ω
−

= + + + +&                (9) 

whereas for a 2:1 resonant modal interaction, 

                sin ,
4

r s r
r r r

r

a aa a γµ
ω

ℜ
= − +&                                                                            (10)       

    ( ) ( )
23cos ,

2 4 4
r s r rs r srr r

r r s f r
r r r

a a K a aK aa a γγ γ σ σ
ω ω ω

ℜ
+ = + + + +& &      (11) 

     
2 sinsin ,
8 2

s sr r
s s s

s s

Zaa a γγµ
ω ω

ℜ
= − − +&                   (12) 

       
3 22 coscos .

8 8 8 2
ss s rs s r s sr r

s s f s
s s s s

K a K a a Zaa a γγγ σ
ω ω ω ω

ℜ
= + + + +&                      (13)  

 

 As discussed in [6-9], the non-trivial K or ℜ entail relevant 1:1 or 2:1 resonance activation 

because of vanishing nonlinear orthogonality properties of resonant modes. Depending on 

control parameters, ( , , , ),f Fσ σ µ both (6)-(9) and (10)-(13) admit both uncoupled and coupled 

fixed-point ( 0)r s r sa a γ γ= = = =& && &  solutions [9]. Overall interaction coefficients (K, ℜ, Krr, Kss, 

Krs) – accounting for quadratic/cubic nonlinearities and infinite-dimensional modal contributions 

– can be found in [9] with comprehensive convergence analyses establishing properly reduced-

order models. 

 

2.3 Space-Time Finite Difference Solution 

 Direct numerical simulations of non-dimensional PDEs (1-2) governing an initial-boundary 

value problem of cable damped forced resonant motion are carried out by employing a second-

order finite-difference (FD) approach centrally approximating both spatial and temporal 

derivatives, thanks to a relevant straightforward routine developed by the authors in [10, 11] to 

handle cable large-amplitude 3-D free vibrations. For the considered 2-D vibration problems, the 

continuous cable is divided into N equal space segments, which entails solving simultaneously a 

2(N-1) multi-degree-of-freedom system for nonlinearly coupled u and v nodal vectors. 

Partitioning the time into a series of incremental steps, a hybrid explicit-implicit numerical 
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integration scheme is adopted via a predictor-corrector iterative implementation and a specified 

tolerance controlling global solution stability and convergence at each time-step.  

 As far as initial state-space conditions are concerned, we assign zero velocities but different 

spatial displacement options. In so doing, we utilize the known MS-based spatial distributions of 

uncoupled/coupled displacements (Eq.4 or 5). Apart from establishing a link between numerical 

and analytical solutions, this allows us to determine (i) how nonlinear spatial MS solutions 

actually evolve with time and (ii) how much computational effort is needed in reaching a steady-

state time response of a high-dimensional discretized system, with respect to the conventional 

zero initiation (i.e., cable at rest). Considering the same control parameters, it further allows us 

(iii) to validate the MS prediction against FD space-time laws with regard to the chosen reduced-

order model embedded in the amplitude and displacement solutions (Eqs.4-13) [9], to the actual 

existence and role of stable/unstable, uncoupled/coupled, 1:1/2:1 resonant, equilibrium/periodic 

(constant/varying-amplitude) motion, and to the validity of asymptotic MS solutions when 

considering greater response amplitudes. Moreover, (iv) insightful multi-degree-of-freedom 

spatial comparisons of MS vs. FD maximum dynamic displacements are of practical interest for 

accurate dynamic tension estimations, by also accounting for the approximate vs. exact [11] 

kinematically non-condensed modeling. 

 

3.  ANALYTICAL PREDICTION VIA CHOSEN REDUCED-ORDER MODELS 

 By considering XH = 850 m, EA ≈ 20,792,460 kN, wC ≈ 9.48 kN/m as in [7-9], the elasto-

geometric (α = EA/H, d) dimensionless parameters of first- and second-crossover cables are (α = 

642.72, d = 0.031) and (α = 1024.28, d = 0.050), respectively. The first-crossover cable exhibits 

(nearly-tuned) 1:1 internal resonance with ωs=2 ≈ 6.287 and ωr=1 ≈ 6.252, whereas the second-

crossover cable exhibits either (nearly tuned) 1:1 or 2:1 internal resonance with ωs=4 ≈ 12.503 

and ωr=3 ≈ 12.498 or ωs=4 and ωr=1 ≈ 6.205, with the relevant linear orthonormalized (r, s) shape 

functions being displayed in Figs.1b and c, respectively. As regards reduced-order models of 
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amplitude/displacement solutions, a series of modal contribution and convergence analyses of 

second-order quadratic coefficients has been conducted as in [8, 9]. As already discussed in [9], 

for crossover cables one may omit a priori negligible contributions of anti-symmetric non-

resonant modes, whereas meaningful contributions of symmetric non-resonant modes have to be 

accounted for along with those of the two resonant modes. Accordingly, with M being the 

highest order of retained modes through the overall nonlinear coefficients in Eqs.(4-13), we have 

chosen M = 10 (without non-resonant anti-symmetric modes) for first-crossover cable and M = 

15 (with all modes, to possibly account for also a multiple internal resonance [9]) for second-

crossover cable. 

 

3.1 Frequency-Response Diagrams and Influence of Control Parameters 

 Based on the Cartesian version of modulation Eqs.(6-9) or (10-13), a series of frequency-

response diagrams, whose bifurcations discriminate coupled from uncoupled (as well as fixed 

point from limit cycle) solution, is parametrically obtained via a continuation approach [22], 

which has been verified by corresponding Runge-Kutta integration solutions [9, 21]. For the sake 

of ease in FD simulations of all resonance cases (Sect.4), we assume the modal damping µ =µr 

=µs in such a way that the damping coefficient c can be evaluated as a single-valued parameter to 

be given in the associated PDEs (1-2). In the following, solid lines denote stable fixed points, 

whereas dashed (dotted) lines denote unstable fixed points settled down through saddle-node SN 

or pitchfork PF (Hopf) bifurcations. 

 The first-crossover cable involving 1:1 internal resonance is first analyzed. Three different 

cases – which assume perfect tuning of resonant frequencies, i.e., σ = 0 – are considered, viz., (i) 

µ = .005, F = .005, (ii) µ = .05, F = .005, (iii) µ = .005, F = .010, in order to examine the effect 

of varying damping (ii) or forcing (iii) parameter with respect to the reference (i) case. 

Associated frequency-response curves of coupled ar (internally driven) and as (externally 

excited), and uncoupled as amplitudes are plotted in Figs.2a, b and c, respectively. To ascertain 
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the possible σ effect, continuation of the (ii) case is also made with actual – albeit small – value 

of σ (ωs -ωr ≈ .005), and only the coupled ar-as results are traced out in Figs.2a and b. Depending 

on relative contributions of quadratic and cubic nonlinearities, overall frequency sweeping 

analyses in Fig.2 highlight how unstable coupled as branches (2b) emanate from uncoupled as 

ones (2c) via double PF1 and PF2 bifurcations. Hysteresis (jump) phenomena are found in all 

uncoupled (2c) and coupled (2a and b) branches with multiple SN bifurcations, and the leaning-

backbone softening behavior due to predominant quadratic nonlinearities is manifested in 

uncoupled branches (2c).  

 Due to activation of 1:1 internal resonance, stable (as well as unstable) coupled ar and as 

amplitudes occur over a wide σf range (Figs.2a and b), with ar (as) prevailing right (left) of the 

case of perfect primary resonance (σf = 0). It should also be noted that right (left) of the PF2 

(PF1) bifurcation, the uncoupled (coupled) as amplitudes are greater than the corresponding 

coupled (uncoupled) as ones [9], and there is a range, bounded by PF1 and PF2 bifurcations, 

where only stable coupled ar-as solutions exist, the larger (smaller) the F (µ) the greater the 

ensuing region. For weaker-damped cases (i and iii), a marginal range (A or B) between Hopf 

bifurcations to which limit cycles are amenable is observed, being enlarged with increasing F. 

By increasing the damping by an order of magnitude (µ =.05), i.e., case (ii) vs. (i), both 

amplitude responses and modal interaction effect are reduced due to a greater energy dissipation. 

In turn, considering the actual σ =.005 value quantitatively – though slightly – influences the 

driven ar, rather than the excited as, with respect to the associated case (ii) with σ = 0. Yet, 

overall qualitative features practically remain the same in both σ cases, with a slight shift of SN 

and PF bifurcations. Accordingly, it appears sufficient to consider σ =0 in the analytical solution.  

 Modal interactions in second-crossover cable are now discussed in Fig.3. By assigning the 

same parameters σ = 0, µ = .005, F = .005 as in case (i) of first-crossover cable (Fig.2), coupled 

ar and as responses due to 1:1 or 2:1 resonance are independently traced out but are displayed 
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altogether in Figs.3a and b, respectively. The trend of both response curves qualitatively 

resembles that in Fig.2: the coupled branches originate from associated uncoupled ones (not 

shown), with PF, SN and Hopf (region C or D) bifurcations occurring at certain σf parameters. 

However, here, both 1:1 and 2:1 resonant interactions persist throughout the considered σf range. 

The predominant role is played by either the driven ar or the excited as amplitude in 1:1 resonant 

responses, depending on the sweeping σf parameter as in Fig.2, whereas the driven ar 

substantially prevails over the excited as in 2:1 resonant responses, regardless of σf. This means 

that the ar mode behaves as an absorber with respect to the as mode, the energy being transferred 

from the latter to the former owing to 2:1 resonance. Such circumstance will be justified via 

numerical analyses in Sect 4, along with the actual predominant role played by 2:1 vs. 1:1 

resonant interactions and the validity of σ = 0 assumption.  

 

3.2 Mixed/Symmetric Nonlinear Dynamic Displacements 

 By focusing on stable uncoupled/coupled amplitude solutions (Fig.2 or 3), corresponding 

nonlinear dynamic u-v displacements can be analytically constructed through Eq.(4) or (5). As 

direct FD simulations and spatial MS-FD displacement comparisons in Sect.4 involve a multiple-

dimensional phase space spanned with u and v amplitudes (as well as their velocities) of every 

cable nodal vector, it is worth examining the spatio-temporal varying displacements of the cable 

when one of its nodal – essentially v – components, contributing meaningfully to both uncoupled 

and coupled displacements, reaches its maximal amplitude either in the downward (Y+) or 

upward (Y-) direction (Fig.1a). The cable mid-span (x = 0.5) or quarter-span from left support (x 

= 0.26) is preferably assumed as such a benchmark point in first- and second-crossover cable 

analyses, respectively. 

 Considering first-crossover cable with µ = .05, F = .005 (Fig.2c), uncoupled v displacements 

(Y+,Y-) corresponding to σf (as) = -0.3 (.001094) and 0.1 (.002249) are comparatively shown in 

Fig.4a. The spatial resemblance to the primary-resonant first symmetric mode (Fig.1b) is 
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apparent, and the upward-downward (e.g., mid-span) amplitude differences (drifts) due to 

second-order spatial corrections of all retained (higher-order) symmetric modes [9] are observed, 

being enhanced with increasing as. As the 1:1 resonant interaction occurs (Figs.2a, b), the 

coupled mixed-modal v displacement (Y+,Y-) profiles are evidently asymmetric, with two 

opposite unequal curvatures, as shown in Fig.4b (σf = -0.1, F = .005) governing the cases (i) µ 

=.005 and (ii) µ =.05 with (ar, as) = (.002186, .003842) and (.001972, .003726), respectively. In 

comparison with Fig.4a, spatial drifts in Fig.4b are more noticeable as a result of modal 

interaction.  

 As to second-crossover cable, it is worth distinguishing the coupled v configurations due to 

1:1 resonance from those due to 2:1 resonance, by considering, for instance, σf = -0.1 in Fig.3. 

Because of the coupled amplitude as (.001163) being greater than ar (.000634), the 1:1 resonant 

(Y+,Y-) displacements in Fig.4c look similar to the directly-excited second symmetric mode 

(Fig.1c), though being asymmetric due to the second anti-symmetric modal participation leading 

to some local curvature changes. On the other hand, the 2:1 resonant (Y+,Y-) displacements in 

Fig.4d are nearly – but not completely – dominated by the driven lowest anti-symmetric mode 

since ar (.001237) is considerably greater than as (.000212). As long as ar amplitudes (Fig.3a) are 

the most significant contributions to the coupled responses (Fig.3), such spatial prevalence of the 

indirectly-excited mode remains qualitatively the same, albeit sweeping σf towards left or right. 

Yet, second-order spatial corrections are observable, e.g., at quarter span, where the opposite 

amplitude values are unequal. In the following, the main uncoupled/coupled spatial characters of 

MS-based v displacements in Fig.4 will be recognized in numerical simulations, on the basis of 

their steady and maximum response amplitudes. 

 

4. DIRECT NUMERICAL SIMULATION AND VALIDATION 

 Depending on control parameters, overall amplitude and displacement MS predictions in 

Sect.3 are now validated by direct FD simulations. After some convergence tests, it was chosen 
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to use 50 cable discrete elements with ∆x = 0.02 and a general time step equal to 0.0001 sec., the 

simulations being unconditionally stable as long as small oscillating amplitudes are considered 

and cables are prevented from compressive total stresses [11]. The new dimensionless time 

variable T, in which original time is non-dimensionalized with respect to the forcing period, is 

considered. Depending on initial u and v displacements (zero velocities), a series of space-

varying time histories is carried out, capturing both transient and steady (fast and slow) dynamics 

over repeated cycles T. For the sake of MS-FD comparisons, histories of spatial (Y+,Y-) steady 

FD displacements, corresponding to the aforesaid benchmark points (x = 0.5 or 0.26) at their 

maxima, are determined in the 1:1 or 2:1 resonance cases. In the following, reference is made to 

steady amplitude (Figs.2 and 3) or spatial displacement (Fig.4) MS results by assuming perfect 

internal resonance σ = 0, as σ produces a minor (negligible) quantitative (qualitative) effect 

(Sect.3.1). Yet, whenever desirable, the actual nonlinear σ value can be evaluated a posteriori 

via a frequency domain analysis of the obtained FD responses (see end of Sect.4.2). 

 

4.1 Dependence of Uncoupled/Coupled Nonlinear Responses on Initial Conditions 

 As nonlinear dynamic response depends, in general, on initial conditions, it is worth 

examining such dependence as regards both uncoupled and coupled responses, by also 

accounting for the effect of control parameters. By way of example, first-crossover cable is 

analyzed. Letting µ = .05, F =.005, σf = 0.1 (Fig.2c), Figs.5a and b illustrate FD simulations of 

mid-span v amplitudes obtained with (a) zero and (b) non-zero MS-based uncoupled Y- (solid 

lines) or Y+ (dotted lines) spatial initiations (Fig. 4a). It can be seen that, irrespective of 

initiations and transient features, all responses reach their steady states with a comparable 

running time. With µ = .005, the reduced damping role is next discussed through Figs.5c-e based 

on zero initiations. With F=.005 and σf = 0.1, Fig.5c exhibits a longer transient than that in 

Fig.5a or b, even though all cases correspond to nearly-equal as MS amplitudes (Fig.2c), which 

entail comparable steady FD responses. Such long transients still persist with σf = -0.3 (Fig.5d), 
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with the ensuing steady response exhibiting a smaller as regime in agreement with MS prediction 

(Fig.2c), and they become even more remarkable, indeed also in terms of larger 

(transient/steady) amplitudes, in Fig.5e when increasing the forcing to F = .01. These results 

show the capability of FD simulation to account for µ and F effects on transient outcomes. 

 Nonetheless, directly initiating the associated spatial (e.g., Y-) uncoupled MS configuration 

(Fig.5f) entails reducing significantly (approximately by half) the overall transient time with 

respect to that in Fig.5e. This highlights that, even though both FD simulations (5e and f) 

ultimately yield the same steady outputs – revealing also a slight drift due to quadratic 

nonlinearities (e.g., Fig.4) –, utilizing the spatial MS-based uncoupled displacements as direct 

initiations in FD analysis is useful for saving computational time. This is reasonable because the 

predicted steady MS amplitudes (Fig.2c) actually govern the slow-varying dynamics via 

modulation equations. Because of small as amplitudes, the corresponding spatial FD distributions 

(not displayed) of all responses in Fig.5 show no feature of modal interaction, thus confirming 

the occurrence of uncoupled solutions characterized by the primary-resonant first symmetric 

mode, similar to that constructed in Fig.4a. 

 Depending on spatial initiations, it is now necessary understanding how responses actually 

evolve as the 1:1 resonant coupling comes into play. To this end, first-crossover cable is again 

considered in Fig.6 with µ = .005, F = .005 and σf = -0.1, for which MS analysis entails only 

stable coupled solution in Fig.2. To discriminate spatially coupled (asymmetric) from uncoupled 

(symmetric) v responses (e.g., Figs.4b vs. a) throughout the time running, FD responses at about 

cable quarter-span from left (x = 0.2) and right (x = 0.8) supports are comparatively recorded 

with black and grey lines, respectively, along with the corresponding spatial displacements 

during a period of peak-to-peak steady amplitudes. 

 First of all, zero initiations are considered and some qualitative differences between transient 

and steady responses are revealed in Fig.6a. At the beginning, both quarter-span responses have 

equal amplitudes; thus spatial responses are associated with first-symmetric mode due to the 
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solely primary resonance. However, the spatial symmetry is destroyed at T ≈ 300 after which the 

anti-symmetric mode is periodically driven into the response due to actual activation of 1:1 

resonance eventually giving rise to unequal-amplitude steady responses, with the right quarter-

span one becoming greater than the other. Clear combination of resonant symmetric/anti-

symmetric displacements is evidenced, which entails different profiles with respect to the 

corresponding MS (Y+,Y-) ones in Fig.4b as regards the relative phases. This may be attributed 

to the fact that the MS analysis relies upon constrained modal phases ensuing from the linear 

eigenfunctions (Fig.1b), which affect the analytical spatial displacements, Eq.(4), whereas direct 

FD simulations with zero initiations are independent of such constraints.  

 The development of coupled from initiated uncoupled response is now discussed. Because no 

stable uncoupled MS solution exists at σf = -0.1 (Fig.2c), spatial uncoupled MS configurations at 

a neighboring frequency value (σf = 0.1), similar to Fig.4a, are utilized. By initiating with the 

phase-different Y- and Y+ uncoupled MS configurations, remarkably quantitative as well as 

qualitative differences arise between Figs.6b and c, respectively. In particular, the responses in 

Fig.6b do not signal any modal coupling feature, maintaining the symmetric displacements, and 

they rapidly reach steady regimes. On the contrary, Fig.6c highlights that the initiated uncoupled 

responses are no longer stable after some transient periods (T ≈ 200), where the mixed modal 

interaction due to 1:1 resonance comes into play, affecting the spatial transition behavior from 

the imposed symmetric uncoupled to steady asymmetric coupled responses. These FD results 

reveal how the onset of coupled responses depends on the phases of initiated uncoupled MS 

displacements. Yet, the left (right) quarter-span steady response in Fig.6c is greater (smaller), 

thereby producing resonant profiles differing, again in terms of relative phases, from those in 

Fig.6a, although both of them evidence coupled dynamics.  

 Not only do the spatial phases of uncoupled initiations, but also those of coupled initiations, 

affect the FD outcomes. By directly initiating with the phase-different Y- vs. Y+ coupled MS 

configurations at σf = -0.1 (i.e., Fig.4b), relevant steady FD responses entail again meaningful 
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phase-different coupled dynamics in Figs.6d vs. 6e, even if both initiations rely on the same MS 

amplitude solution. In essence (Fig.6d), initial transient periods are substantially eliminated and 

corresponding coupled profiles are similar to those in Fig.6c. Conversely, longer transients are 

observed in Fig.6e exhibiting also the initial phase exchange that makes the ensuing coupled 

profiles similar to those in Fig.6a. Thus, depending on spatial initiations and associated phases, 

actual FD responses in Fig.6 allow us to identify, regarding steady spatial displacements, three 

coexisting numerical solutions consisting of either one uncoupled (6b) or two coupled (6a and e 

or 6c and d) responses, in contrast with the uniquely constrained spatial MS solution of Fig.4b. 

In particular, zero spatial initiation is seen to lead to the former coupled response, likely in 

connection with the spatial response drift towards Y-direction observed in Fig.4b. Towards the 

aim of comparing individually MS-FD spatial distributions, attention is turned to the case of 

spatial Y- coupled initiations (Fig.6d) because, besides leading to dynamic coupled profiles 

qualitatively resembling those predicted by MS solution (Fig.4b), it does not need a mammoth 

calculation task with respect to other initiation cases. This will be addressed in Sect.4.2. 

 Overall, the actual existence of amplitude-steady uncoupled/coupled damped forced FD 

responses validates the fixed-point MS predictions based on reduced-order models. Yet, the 

space-time varying FD analyses highlight the influence of spatial initiations and associated 

phases on the spatial numerical outcomes being actually governed by either the solely primary 

resonant or the primary/internally resonant dynamics. Meaningful transient and dynamic-

instability mode-transition characteristics are revealed. Against the case of zero initiations, 

utilizing proper MS-based spatial configurations as FD initiations considerably reduces the 

computational CPU time in reaching steady-state responses. This numerical aspect appears 

practically advantageous when handling weakly damped multi-degree-of-freedom resonant 

responses. 
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4.2 Role of Coexisting Resonant Dynamics and Spatial Displacement Comparisons 

 Due to coexistence of uncoupled/coupled solutions (Fig.2), 1:1 vs. 2:1 internally-resonant 

modal interactions (Fig.3) and possible amplitude-modulated solutions (Figs.2 and 3), it is 

worthwhile assessing the actual role of such analytically-predicted coexisting dynamics – when 

varying control parameters – via direct numerical simulations based on relevant initiations. Of 

practical concern, overall quantitative and qualitative comparisons of MS vs. FD solutions are 

thoroughly made in terms of (steady-state) spatial (Y+,Y-) v displacement distributions 

meaningful for reliable dynamic stress estimations (see Sect.4.3). 

 By considering first-crossover cable with different sets of (µ , F, σf), Fig.7 compares 1:1 

resonant configurations between MS (lines) and FD (circles) solutions. As anticipated in 

Sect.4.1, all FD simulations in Fig.7 are obtained with the fixed Y- spatial initiation of MS 

coupled solution with µ = .005, F = .005, σf = -0.1. Relevant to Figs.6d and 4b, Fig.7a provides a 

good qualitative and quantitative agreement of asymmetric nonlinear Y+ and Y- resonant 

profiles, in terms of both amplitudes and relative phases. This holds satisfactorily also in the case 

of increased µ = 0.05 (Fig.7b) or F = 0.01 (Fig.7c), while keeping other parameters fixed. Then, 

σf is varied towards increasing ar-as amplitudes (Figs.2a and b). It is seen that all of the FD 

outcomes in Figs.7d (σf = -0.2), 7e (σf = -0.3) and 7f (σf = -0.4) validate analytical MS 

predictions regarding the applicable range of asymptotic amplitudes. It is also worth noting that 

stable uncoupled MS responses, though coexisting in such σf range, do not play any role since 

coupled MS responses (Fig.6d) are initiated in FD simulations.  

 The actually prevailing role played by uncoupled responses against coupled ones is now 

highlighted. Indeed, when being outside the predicted range in between PF1 and PF2 bifurcations 

in Figs.2a and b, it follows from Figs.5b and f that steady FD responses are uncoupled when 

uncoupled MS solutions are initiated (Fig.2c). However, such a persistence of spatial shape 

initiation does not occur any more when initiating with coupled MS solutions, as shown in 

Figs.8a (F=.005) and 8b (F=.01) with µ = .005. By increasing σf right of PF2 bifurcation, both 
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quarter-span FD v responses in Figs.8a (σf = 0) and 8b (σf = 0.1) tend, after variable amplitude 

transients due to asymmetric coupled initiations, to comparable values associated with spatially 

symmetric vibration (Y+,Y-) profiles (circles) typical, of course, of the first-symmetric mode and 

resembling very much those (solid lines) predicted by MS solution. Quantitative differences are 

practically less than those of coupled responses (Fig.7), which experience a higher-dimensional 

mixed modal interaction. When being away from any modulated (periodic) solution, such 

circumstance occurs even if sweeping σf further away to the right or initiating with ar-dominant 

coupled MS configurations at the associated σf. This predominance of uncoupled FD responses 

right of PF2 bifurcation is anyhow related to MS predictions in Fig.2, whose uncoupled as 

amplitudes (2c) are greater than the corresponding coupled ones (2b), implying that the primary 

resonance plays a greater role than 1:1 resonance. It is the opposite case of Fig.7 where, 

sweeping σf left of PF2 bifurcation, coupled FD responses settle down when initiating coupled 

MS responses, as the predicted coupled (uncoupled) as amplitudes are considerably greater 

(smaller).  

 Yet, by continuously sweeping σf farther below the left SN, such steady coupled responses in 

Fig.7 do not occur anymore because of a jump phenomenon. As predicted in Fig.2, e.g., with a 

fixed F=.005, the coupled MS solution shows how the cable with meaningful (µ = .05) or small 

(µ = .005) damping loses stability via SN at plausibly small (σf ≈ -0.3035) or meaningless large 

(σf ≈ -30) response ar-as amplitudes, respectively. Accordingly, the FD simulations with coupled 

MS initiations validate (µ = .05) or strongly revise (µ = .005) such predictions of jump 

phenomena by highlighting the occurrence of steady small-amplitude uncoupled responses at σf 

≈ -0.33 in Figs.9a (µ = .05) and σf ≈ -0.77 in Fig.9b (µ = .005).  

 In turn, the actual existence of nonlinearly periodic response associated with a predicted 

Hopf bifurcation is also ascertained. By focusing on the coupled branches in Figs.2a and b with 

µ = .005 and F=.01, the MS local stability shows that two Hopf bifurcations delimit a marginal 
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σf range (σf ≈ 0.0429 and 0.0836). The FD simulations in Figs.10a and b validate this prediction 

by highlighting, besides transient dynamics, the steadily amplitude-modulated responses 

governing coupled u (10a) and v (10b) amplitudes at σf = 0, with assigned spatial coupled 

initiations as in Figs.7 and 8.  

 The second-crossover slacker cable is now analyzed, towards the aim of understanding – via 

FD simulations – whether 1:1 or 2:1 resonance activation actually predominates in the dynamic 

response as their independent MS solutions coexist in the whole considered σf range in Fig.3, 

with identical µ = .005 and F=.005. Recall also that cable node at x = 0.26 is assumed as the 

benchmark point concerning spatial (Y+,Y-) displacements. Following Sect.4.1, a similar 

analysis – aimed at determining proper spatial initiations for coupled FD responses – has been 

performed, ending up with the choice to use, for a pertinent σf, spatial Y- coupled 1:1 (like first-

crossover cable) and Y+ coupled 2:1 resonant MS displacements (e.g., Figs.4c and d) as 

initiations in the relevant FD cases. Upon varying σf, for each spatial 1:1 or 2:1 resonant 

initiation, the associated steady-state FD outcomes of v amplitudes at x = 0.26 are comparatively 

zoomed in Fig.11 with solid lines (1:1) or circles (2:1), respectively.  

 Starting with σf = -0.4, both FD simulations in Fig.11a show qualitatively different, though 

quantitatively similar, steady states, regarding the relative phases, owing to different initiations. 

At σf = -0.2, the two responses coincide (Fig.11b), with smaller amplitudes than those in Fig.11a, 

as predicted in Fig.3. To gain overall insight into global responses, the relevant (Y+,Y-) 

displacement comparisons are depicted in Fig.12a, in which both 1:1 (solid lines) and 2:1 

(circles) resonant FD simulations are plotted against MS (dashed lines) 2:1 resonant results (e.g., 

Fig.4d). It can be seen that, apart from a quantitative deviation of MS displacements from the 

other two perfectly-matched FD displacements, all of them put into evidence the nearly-

predominating lowest anti-symmetric mode due to the major role of 2:1 – against 1:1 – 

resonance, in accordance with what observed in Fig.3a. This highlights how the coexisting 1:1 
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resonance does not play any role even when directly initiating with spatial 1:1 resonant 

displacements. Such circumstance holds even when sweeping σf right of σf = 0 in Fig.3, as 

shown in Figs.11c (σf = 0.2) and 11d (σf = 0.35) with the relevant displacement comparisons 

given in Figs.12b and c, or even farther right of PF2 bifurcation, as shown in Fig.11e (σf = 0.5). 

Moreover, with σf = 0, both 1:1 and 2:1 resonant initiations in Fig.11f end up with a beating-type 

phenomenon and amplitude-modulated feature due to periodical energy transfer of 2:1 resonant 

interaction. This validates Fig.3 about how periodic 2:1 resonant amplitudes may originate from 

the nearby Hopf bifurcation at σf = 0.123. Overall, such numerically observed prevailing role of 

2:1 over 1:1 resonance is in qualitative agreement with that observed in nonlinear undamped free 

planar vibrations [11], where directly initiating the second symmetric mode at second crossover 

entails 2:1 resonant interaction involving first anti-symmetric mode, instead of the coexisting 1:1 

resonant interaction involving second anti-symmetric mode. With regard to CPU time, all FD 

simulations in Fig.11 require a number of forcing periods (>1500) to achieve steady responses 

longer than that (<1000) for lower-sagged first-crossover cable (e.g., Fig.6).   

 Finally, it is certainly worth evaluating the actual internal detuning σ parameter from a 

transient-free FD time series since the overall discussion of interrelated FD-MS solutions is 

based on σ = 0. As an example, a Fourier-based analysis of the two simulations in Fig.11a is 

performed, and results of 1:1 and 2:1 resonant initiations are plotted in Figs.13a and b, 

respectively. Remarkably, both responses highlight two major peaks, with the amplitude ar being 

greater than as, which is in good accordance with the 2:1 resonant MS prediction in Fig.3 for σf = 

-0.4. The corresponding two nonlinear frequency values are the same in both plots, i.e., 0.165 

and 0.328 Hz, thus providing a nearly perfect tuned 2:1 frequency ratio. Apart from confirming 

the actually predominant role of 2:1 resonance at second crossover, relying upon σ = 0 in MS 

solutions appears reliable for MS-FD comparisons. 
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4.3 Discussion on Approximate/Exact and Planar/Non-Planar Cable Modeling 

 For the sake of completeness and truth, straightforward FD analyses of more realistic cable 

models are now addressed shortly. Based on the same assigned control parameters and initial 

conditions, attention is paid to highlighting (i) the validity of approximate PDEs (1-2) vs. the 

exact ones [11] for planar motion, and (ii) the limitation of the approximate planar (2-D) 

modeling (herein considered) vs. the associated non-planar (3-D) one [7]. 

 Regarding the first issue, the FD responses of approximate PDEs are compared with those of 

exact PDEs which are valid for also a larger amplitude range and a larger sagged cable. 

Comparisons for both uncoupled and coupled (constant- or varying-amplitude) solutions are 

made in terms of induced nonlinear dynamic tensions whose strains are spanwise non-uniform 

[9], thus being of remarkable engineering significance. By considering first-crossover cable, the 

benchmarking (mid-span) responses of dynamic tension τ, normalized with respect to maximum 

static tension, are compared in Fig.14, whose left (right) column represents approximate (exact) 

PDEs’ outcomes. Various cases of 1:1 resonant steady or modulated responses are considered, 

with Figs.14a, c, e (14b, d, f) corresponding to Figs.8b, 7f and 10b, respectively. The available 

maximum/minimum τ values of fixed-point MS solutions are also reported in Figs.14a and c 

with horizontal lines. Interestingly, Fig.14 highlights overall qualitative as well as quantitative 

agreements for both steadily constant-amplitude (a-d) and varying-amplitude (e-f) τ responses 

between MS-approximate, FD-approximate and FD-exact modeling, along with the compatibility 

of FD transient periods and features. Thus, for finite-amplitude vibrations of small-sagged cable, 

the MS/FD nonlinear tension responses are both valid and the associated approximate PDEs (1-

2) can be used reliably. 

 Regarding the second issue, it is well known [1] that multiple internal resonances exist at 

crossovers involving also out-of-plane (denoted w) modes and planar vs. non-planar response 

scenarios [3, 4] differing from those predicted in Figs.2 and 3. Investigating them systematically 

in the analytical-numerical comparison perspective herein pursued would require extensive and 
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heavy MS-FD analyses. We just limit ourselves to reconsidering both crossover cables to show 

how the modulated planar responses obtained with the 2-D model turn into steady non-planar 

responses when correctly considering the associated 3-D model [7] with the same planar/non-

planar damping (µ = .005). Focusing on σf = 0, whose periodically amplitude-modulated FD v 

responses based on planar model are given in Figs.10b and 11f, the corresponding FD v (x = 

0.50) and w (x = 0.26) responses based on non-planar model are plotted in Figs.15a, c and 15b, d, 

for first- and second-crossover cables, respectively. It can be seen that in both responses, after 

some transients, the initiated planar amplitudes decrease up to low values, whereas substantial 

non-planar amplitudes are born from trivial values, exhibit some transients and then become 

ultimately steady. Correspondingly, the spatial displacement profiles visualized in Figs.16a and b 

show the characters of lowest symmetric (a) and anti-symmetric (b) out-of-plane mode, the 

coexisting non-planar 2:1 resonance actually predominating against the planar 1:1/2:1 

resonances at first/second crossovers, respectively, and entailing overall regularization of cable 

response. Thus, the constrained planar model can be inadequate for such a systematic response 

analysis, and it is definitely advised to use the complete 3-D model for capturing, analytically 

and/or numerically, the actual non-planar resonant dynamics. 

 

5. SUMMARY AND CONCLUDING REMARKS 

 Direct numerical FD-based simulations of PDEs governing geometrically nonlinear forced 

dynamics of suspended cables under primary external and 1:1 or 2:1 internal resonances have 

been carried out, in order to validate analytical MS-based predictions of associated finite-

dimensional ODEs. Different sagged horizontal cables at the first two crossovers involving 

mixed symmetric/anti-symmetric modal interactions have been analyzed, by relying on the 

approximate – kinematically non-condensed – planar modeling. With weakly quadratic/cubic 

nonlinearities and multiple modal contributions, local scenarios of stable/unstable and 

uncoupled/coupled MS solutions have been evaluated by means of frequency response curves 
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and bifurcations, accounting for also the influence of further control parameters. Towards the 

aim of interrelating analytical/numerical solutions, the corresponding amplitude-dependent 

damped forced resonant MS displacements have been constructed and further utilized as spatial 

initiations in FD simulations capturing fast/slow dynamics of a higher-dimensional model. 

 Depending on system control parameters and spatial initiations, space-time varying FD 

examinations reveal the actual existence of steady-state uncoupled (symmetric) vs. coupled 

(mixed) amplitude (displacement) MS solutions, along with meaningful transient evolution and 

dynamic-instability mode-transition characteristics. As regards computational CPU time efforts, 

directly initiating with proper MS-based spatial configurations makes the steady-state FD 

responses accessible with fewer transient periods than those necessary with conventional zero 

initiations. This allows undertaking large parametrical studies, which are needed for practical 

applications. The observed variability of spatial numerical outcomes – highlighting actual 

predominance of solely primary or primary/internally resonant dynamics – mainly depends on 

whether the initiated displacements/phases are zero, uncoupled or coupled, in contrast with the 

analytical solutions whose spatial distributions and relative phases are constrained to pertinent 

eigenfunctions and modulation equations, respectively.  

 With reference to a cable benchmarking point, comparisons of uncoupled/coupled 

(downward/upward) spatial MS-FD displacements highlight quantitative as well as qualitative 

agreement of multi-degree-of-freedom responses. Overall, direct numerical simulations 

thoroughly validate analytical predictions. Apart from the limitation concerned with considering 

the 2-D cable modeling, substantial parametric findings enable us to precisely identify the role of 

coexisting/competing (uncoupled vs. coupled) resonant dynamics, the actual jump phenomena 

with the relevant amplitude range, the predominant 2:1 vs. 1:1 (as well as non-planar vs. planar) 

internal resonance, the periodically amplitude-modulated coupled responses, the actual nonlinear 

frequencies, and the validity – through nonlinear dynamic tension comparisons – of 

kinematically approximate ODEs/PDEs, for small-sagged cables, against exact PDEs.  



 25

 It is worth emphasizing that, by accounting for multi-dimensional space-time dependent 

responses, direct numerical simulation and validation of analytical prediction are of the utmost 

importance for engineering design and practice. Besides systematically complementing the 

essential, analytically disclosed, system dynamics, numerical achievements furnish improved 

understanding of the basic mechanisms of dynamic responses, along with valuable information 

about possible prevalence of actually coexisting phenomena. It is felt that the present analyses 

may pave the correct methodological way for conducting a 3-D investigation of cable nonlinear 

forced vibrations involving a comprehensive description of out-of-plane/in-plane responses. 
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