Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Nonlinear longitudinal/transversal modal interactions in highly extensible suspended cables

Srinil, N. and Rega, G. (2008) Nonlinear longitudinal/transversal modal interactions in highly extensible suspended cables. Journal of Sound and Vibration, 310 (1-2). pp. 230-242. ISSN 0022-460X

[img]
Preview
PDF (strathprints018549.pdf)
strathprints018549.pdf

Download (3MB) | Preview

Abstract

Recent research literature mostly deals with nonlinear resonant dynamics of low-extensible cables involving transversal modes. Herein, we aim to investigate geometrically nonlinear longitudinal/transversal modal interactions in highly extensible suspended cables, whose material properties are assumed to be linearly elastic. Depending on cable elasto-geometric properties, the spectrum of low-order planar frequencies manifests primary and secondary frequency crossover phenomena of transversal/transversal and longitudinal/transversal modes, respectively. By focusing on 1:1 internal resonances, nonlinear equations of finite-amplitude, harmonically forced and damped, cable motion are considered, fully accounting for overall inertia and displacement coupling effects. Meaningful quadratic nonlinear contributions of non-resonant, higher-order, longitudinal modes are highlighted via a multimode-based, second-order multiple scales solution. Overall coupled/uncoupled dynamic responses, bifurcations, stability and space-time-varying displacements due to longitudinal/transversal (vs. transversal/transversal) modal interactions at secondary (vs. primary) crossovers are analytically and numerically evaluated, along with the resonant longitudinal mode-induced dynamic forces.