
A Comparative Evaluation of Dynamic Visualisation Tools 

Michael J. Pacione, Marc Roper, Murray Wood 

Department of Computer and Information Sciences, University of Strathclyde, 

Livingstone Tower, 26 Richmond Street, Glasgow, G1 1XH, UK

{Michael.Pacione, Marc.Roper, Murray.Wood}@cis.strath.ac.uk 

Abstract

Despite their potential applications in software 

comprehension, it appears that dynamic visualisation 
tools are seldom used outside the research laboratory. 

This paper presents an empirical evaluation of five 

dynamic visualisation tools - AVID, Jinsight, jRMTool, 
Together ControlCenter diagrams and Together 

ControlCenter debugger. The tools were evaluated on a 

number of general software comprehension and specific 
reverse engineering tasks using the HotDraw object-

oriented framework. The tasks considered typical 
comprehension issues, including identification of software 

structure and behaviour, design pattern extraction, 

extensibility potential, maintenance issues, functionality 
location, and runtime load. The results revealed that the 

level of abstraction employed by a tool affects its success 

in different tasks, and that tools were more successful in 
addressing specific reverse engineering tasks than 

general software comprehension activities. It was found 

that no one tool performs well in all tasks, and some tasks 
were beyond the capabilities of all five tools. This paper 

concludes with suggestions for improving the efficacy of 

such tools.

1. Introduction

This paper presents a comparison of five dynamic 

visualisation tools. Dynamic visualisation is the process 

of modelling the behaviour of software systems. The large 

volume of information typically generated during 

dynamic visualisation necessitates tool support. The 

complex interactions inherent in the object-oriented 

paradigm make dynamic analysis particularly applicable. 

Dynamic visualisation tools have a variety of applications 

in the reverse engineering and software comprehension 

process, including software evolution, reengineering, 

refactoring, reuse, redocumentation, and legacy system 

migration. Stroulia and Systä [1] identify three key 

research areas for dynamic analysis, namely: finding 

effective ways of presenting the results; integration with 

forward engineering; and application integration and 

migration (e.g. to the Web). One of the motivations of this 

paper was beginning an investigation into the first of 

these areas. The aim of this paper was to compare the 

performance of a representative selection of dynamic 

visualisation tools in software comprehension tasks. This 

was motivated by the apparent lack of use of such tools 

outside the research laboratory. Section 2 discusses 

dynamic visualisation and proposes a scale for measuring 

the level of abstraction of a tool. Section 3 presents the 

background to the case study, and a set of questions that 

can be used to evaluate dynamic visualisation tools. 

Section 4 discusses the results of the case study and their 

implications. Section 5 briefly surveys related work in 

dynamic visualisation. Section 6 summarises the paper 

and draws conclusions and directions for future work 

from the case study results. We conclude that current 

dynamic visualisation tools do not provide sufficient 

support for software comprehension when used 

individually, and make suggestions for improving the 

efficacy of such tools. 

2. Dynamic visualisation 

Dynamic visualisation [2] of a software system 

consists of three phases: collection of data about the 

behaviour of the software system; analysis of the data 

collected; and presentation of the analysis results. These 

three procedures can be used to characterise dynamic 

visualisation tools. 

Behavioural data can be extracted either statically by 

parsing the program code, or dynamically from an event 

trace of the program’s execution. An event trace can be 

produced by instrumenting the source code, object code, 

or environment, or running the system under the control 

of a debugger or profiler. 

There are three principal analysis techniques for 

dynamic data. Selective instrumentation instruments only 

those methods that are considered ‘interesting’ to the 

analysis. Pattern recognition extracts repeated patterns of 

behaviour from the data. Abstraction techniques can be 

used to aggregate the information produced. Additionally, 

Proceedings of the 10th Working Conference on Reverse Engineering (WCRE’03) 
1095-1350/03 $ 17.00 © 2003 IEEE 



traces may be split to aid manageability, and tracing may 

be suspended and resumed. 

Three principal diagramming techniques are used to 

present the results of dynamic visualisation. The first of 

these is basic graph representations. Graphs are 

particularly susceptible to issues of scalability. Secondly, 

UML diagrams represent a de facto diagramming 

standard that is widely understood. Thirdly, message 

sequence charts (MSCs) are similar to UML interaction 

diagrams, and representations based on these can address 

some of the problems associated with graph-based 

representations and interaction diagrams, such as 

scalability and ambiguity. 

The preceding characteristic properties help define the 

level of abstraction of a dynamic visualisation tool. This 

paper proposes an ordinal scale with which the level of 

abstraction of such tools (and also other tools, diagrams, 

and documentation) can be categorised. This scale is 

shown in Fig. 1. At the microscopic end of the scale, 

debuggers (1) are representative of the lowest level of 

abstraction that a dynamic analysis tool can produce. At 

the opposite, macroscopic, end are tools that provide a 

broad overview of an entire software system at a high 

level of abstraction, such as aggregate information about 

object population, memory usage, load distribution, or 

deployment (5). The middle portion of the scale ascends 

from tools that illustrate method calls and returns (2), 

through tools giving an object- or class-level 

representation of the system (3), to tools that provide an 

architectural-level view of the system (4). The program 

code itself can be considered to be at level 0. 

3. Case study

The aim of the case study was to evaluate the 

performance of the tools in a realistic software 

comprehension scenario. The available tools were 

evaluated by assessing their performance in a number of 

dynamic visualisation tasks. The tasks take the form of 

questions that an analyst would find it useful to be able to 

answer about a software system. Large-scale questions 

consider the entire system, and are typical of those that 

would be asked in a general software comprehension 

effort. Small-scale questions address only a part of the 

system, and are typical of those asked while carrying out 

a specific reverse engineering task. These general 

questions can be reused for the evaluation of any type of 

software comprehension tool in the context of any 

specific system. The large-scale questions are 

immediately reusable, while the small-scale questions can 

be instantiated within the context of the system being 

used for the evaluation. JHotDraw [3, 4] was chosen for 

this case study as it is a reasonably complex, real-life 

application framework typical of the type of system that 

would be subject to software comprehension and reverse 

engineering efforts. HotDraw is also widely used as a case 

study in the literature. The evaluation was carried out by a 

single user with a knowledge of JHotDraw and dynamic 

visualisation tools. It was felt that a user with reasonable 

JHotDraw knowledge and tool experience would give 

more balanced results than a user who was a novice or 

expert in either or both fields. A case study involving 

such different users may, of course, produce different 

results. 

The tools evaluated are a representative selection of 

dynamic visualisation tools: almost the full range of 

abstraction levels introduced in Fig. 1 is represented, and 

a wide variety of the collection, analysis, and presentation 

techniques discussed in Section 2 are employed. AVID [5] 

and jRMTool [6] both use reflexion models to illustrate 

the relationships between the high-level entities in a 

system. The models produced by jRMTool illustrate the 

conformance of the analyst’s model of the system to the 

extracted model. The diagrams generated by AVID
illustrate the system execution and object population as a 

series of frames that can be viewed individually, 

animated, and summarised. Together [7] generates UML 

class and interaction (sequence and collaboration) 

diagrams from static analysis of source code. The 

Together debugger (considered as a separate tool) 

provides the standard debugging features, including 

breakpoints, expression evaluation and monitoring, 

variable watches and modification, and program flow 

control. It is integrated with the source code and diagrams 

(where available). Jinsight [8] is a performance-focussed 

tool that produces a variety of dynamic diagrams that 

illustrate method calls, objects, and memory usage from 

an event trace. Further discussion and comparison of 

these and other dynamic visualisation tools is available in 

[9]. 

The system used for this case study was the JHotDraw 

semantic drawing editor framework, consisting of 125 

classes. A JHotDraw drawing editor consists of a drawing 

containing figures and connections between them, and a 

set of tools for creating and manipulating the drawing 

elements. An example JHotDraw application is shown in 

Fig. 2. 

Proceedings of the 10th Working Conference on Reverse Engineering (WCRE’03) 
1095-1350/03 $ 17.00 © 2003 IEEE 



Fig. 1. The abstraction scale. 

3.1. Large-scale questions

The following questions are intended to be typical of 

those asked during the course of a software 

comprehension effort. Questions L1-L6 are inspired by 

the six ‘overall understanding’ questions of Systä et al. 

[10, p.378]. Questions L7 and L8 address issues that are 

particularly relevant to framework reuse, while L9 is an 

important software comprehension issue. 

L1 What is the static structure of the software system? 

The static structure of an object-oriented system can be 

illustrated by showing the classes and their relationships. 

L2 What interactions occur between objects at 

runtime? In an object-oriented system, object interactions 

can be represented as a series of method calls. 

L3 What is the high-level structure/architecture of the 

software system? Software system architecture can be 

illustrated by displaying the relationships between the 

high-level components of the system (e.g. between the 

drawing and its elements in JHotDraw). 

L4 How do the high-level components of the software 

system interact? High-level component interactions can 

be illustrated by representing the communications 

between these components (e.g. between the tools and the 

drawing elements in JHotDraw). 

L5 What patterns of repeated behaviour occur at 

runtime? Rather than representing repetitive behaviour 

individually, such behaviour can be abstracted and 

illustrated in an aggregated form. 

L6 What is the load on each component of the software 

system at runtime? Runtime load can be measured in a 

number of ways, including memory or CPU usage, object 

population, or method call frequency. 

L7 What design patterns are present in the software 

system's implementation? Design patterns [11] represent a 

general solution to a design problem in a context, and 

contain both structural and behavioural aspects. 

L8 Where in the software system are the hotspots 

where additional functionality can be added? Hotspots are 

points in a framework where the framework designer 

intends extensions to be made. 

L9 What impact will a change made to the software 

system have on the rest of the software system? Change 

impact analysis allows an analyst to investigate the effect 

of any structural and/or behavioural changes that may be 

made to the system. 

Fig. 2. The JavaDrawApp sample JHotDraw application. The toolbar on the left contains tools for 
selecting and creating figures and connections in the drawing.

Proceedings of the 10th Working Conference on Reverse Engineering (WCRE’03) 
1095-1350/03 $ 17.00 © 2003 IEEE 



3.2. Small-scale questions

The following questions are intended to be typical of 

those asked during the course of a specific reverse 

engineering effort. Questions S1, S2, and S6 are inspired 

by the ‘goal-driven reverse engineering’ and 

‘object/method behaviour’ questions of Systä et al. [10, 

p.378]. Questions S3, S4, and S5 address issues typically 

encountered in framework comprehension [12] and are 

typical maintenance activities. 

S1 What are the collaborations between the objects 

involved in an interaction? 

S2 What is the control structure in an interaction? 

S3 How can a change be mapped onto the functionality 

provided by the software system? 

S4 Where is the functionality required to implement a 

solution located in the software system? 

S5 What alternative functionalities are available in the 

software system to implement a solution? 

S6 How does the state of an object change during an 

interaction? 

3.3. Small-scale questions specified for JHotDraw

The following questions instantiate the small-scale 

questions above for the JHotDraw domain. 

J1 A common problem in JHotDraw applications is the 

display not being updated as desired when a change is 

made to the underlying model. To understand this 

problem, it is necessary to investigate the redraw 

mechanism of JHotDraw, which is an interaction 

consisting of a sequence of object collaborations. 

J2 When a drawing element is moved or has its 

dimensions changed, there may be erratic changes to this 

and other drawing elements to which it is connected. To 

understand this problem, it is necessary to investigate the 

control structure used by JHotDraw to enforce constraints. 

J3 JHotDraw applications often require collision 

detection, so that action can be taken when two elements 

'collide' (i.e. overlap in the drawing). To understand this 

problem, it is necessary to investigate the mechanism by 

which JHotDraw determines the locations of drawing 

elements, in order that the solution to the collision 

detection problem can be mapped onto the functionality 

available in JHotDraw. 

J4 In order to implement the solution for J3, it is 

necessary to identify the location of the functionality in 

JHotDraw that returns the position of an element and how 

this information can be used to test whether elements 

overlap. 

J5 To move or resize a drawing element in JHotDraw 

there is a choice of functionality that requires 

investigation and understanding as some of the 

alternatives may have undesired side effects. 

J6 When debugging a JHotDraw application, it may be 

important to examine the internal state of objects in the 

drawing. In order to extract such information, it is 

necessary to investigate the way in which an object’s state 

changes during the course of an execution. 

4. Case study results

Table 1 summarises the results of the case study. For 

each tool, it shows the extraction, analysis, and 

presentation techniques employed, its abstraction level, 

and its performance in the tasks. It is clear form Table 1 

that Together diagrams and Jinsight were able to answer 

the most questions, while jRMTool and AVID could 

answer the fewest. Comparing tools of similar abstraction 

levels that use different extraction techniques indicates 

that, in this case, the choice of statically or dynamically 

extracted information does not affect significantly the 

number of questions the tool can answer. Table 1 also 

shows that the reflexion model technique is unsuitable for 

small-scale questions whether statically or dynamically 

extracted information is used. It would be interesting to 

assess in this way the performance of a tool that combines 

both types of information, such as Shimba [10] (which 

was not available for evaluation). 

Table 1 reveals that an abstraction level of around 2-3 

is optimal in terms of answering the most questions. 

Moving away from this point, for small-scale questions, 

the tools become less effective as their abstraction levels 

move towards the higher (macroscopic) end of the scale, 

while for large-scale questions the opposite is true. As 

expected, tools that employ abstraction as an analysis 

technique were able to answer more large-scale questions 

than the tool that did not (Together debugger). However, 

increasing the level of abstraction still further resulted in 

worse performance in small-scale questions than if no 

abstraction were used. It should be noted that these 

findings may be dependent on the type of questions that 

were asked, but, as stated, they were intended to be 

representative of those that would be asked by an analyst 

engaged in software comprehension. 

4.1. Together diagrams 

Fig. 3 shows a sequence diagram generated by Together.

Together was successful in producing a model of the 

static structure of the system in the form of a class 

diagram. Its statically derived interaction diagrams could 

be used to give an approximation of the runtime 

behaviour of a single method. There is no functionality 

for identifying high-level structural components or 

interactions, save for what can be determined by the 

analyst from the class and interaction diagrams. 

Behavioural and design patterns are not automatically 

identified. The lack of runtime information makes it 

Proceedings of the 10th Working Conference on Reverse Engineering (WCRE’03) 
1095-1350/03 $ 17.00 © 2003 IEEE 



impossible to measure the load on system components. 

There is no way to identify hotspots automatically. Some 

idea of change impact analysis can be obtained using the 

‘Search for Usages’ function, which identifies all code 

locations where an attribute, method, class, interface, or 

package is used. 

Table 1. Tools summary comparison.

Tool Together
diagrams 

Jinsight jRMTool AVID Together
debugger 

Extraction 

technique

Static Dynamic 

(profiler) 

Static1 Dynamic 

(profiler) 

Dynamic 

(debugger) 

Analysis technique Abstraction Pattern recognition, 

abstraction,

suspension2

Abstraction Abstraction, 

suspension 

Selective 

instrumentation, 

suspension 

Presentation 

technique

UML diagrams MSC-based Graph-based Graph-based Textual 

Abstraction level 2-3 2-3 4 4 1 

Large-scale 

performance

(/9)

3

{L1, L2, L9} 

4

{L2, L5, L6, L9} 

3

{L3, L4, L9} 

3

{L3, L4, L9} 

1

{L2}

Small-scale 

performance

(/6)

5

{J1, J2, J3, J4, 

J5}

4

{J1, J2, J3, J5} 

0

{}

0

{}

3

{J1, J2, J6} 

Overall 

performance

(/15) 

8

53% 

8

53% 

3

20% 

3

20% 

4

27% 

Fig. 3. A UML interaction sequence diagram produced by Together.

1 Although jRMTool can generate reflexion models using dynamically extracted information, a facility to convert the output of a Java execution trace

generator into the format required by jRMTool was not available. 
2 ‘Suspension’ refers to the ability to suspend and resume tracing.

Proceedings of the 10th Working Conference on Reverse Engineering (WCRE’03) 
1095-1350/03 $ 17.00 © 2003 IEEE 



Together coped well with the small-scale questions J1-

J5: it was able to answer the questions on object 

collaboration, control structure, mapping, and 

functionality identification. However, Together’s lack of 

dynamically extracted information prevents it from 

observing changes to the state of an object at runtime. 

The strengths of Together were seen as: the 

comprehensiveness of its diagrams due to their generation 

from source code; and its ‘Search for Usages’ 

functionality. Together’s principal weaknesses are 

attributable to its lack of dynamically extracted 

information, namely: while the diagrams are broad in 

scope they lack depth; it is impossible to focus the 

diagrams on a particular part of the system’s execution; it 

is difficult to know which are the ‘interesting’ methods 

for which the analyst should create sequence diagrams; 

sequence diagram generation can be time-consuming; 

references to (methods of) interfaces and abstract classes 

cannot be resolved to objects, as the 

implementing/extending class cannot be determined 

statically; references to subtypes cannot always be fully 

resolved, as it is not possible to determine statically 

whether an object is an instance of the supertype or of one 

of its subtypes; and the inability to examine internal 

object state. 

4.2. Jinsight 

Fig. 4 shows the execution view of Jinsight. Jinsight

was not able to give information on the static structure or 

high-level architecture of the system. It provides an array 

of diagrams for examining dynamic behaviour, but cannot 

display behavioural information for high-level 

components. The execution pattern view was used to 

identify patterns of repeated behaviour. The execution 

view and object population histogram can be used to 

identify high-activity classes and methods. Jinsight does 

not support the identification of design patterns or 

hotspots for extension. The method histogram and 

invocation browser can be used in conjunction with the 

execution view to identify where methods are used, which 

would be useful for change impact analysis. 

Jinsight was able to answer questions on object 

collaboration and control structure. The size of the 

diagrams made it difficult to identify how a solution could 

be mapped onto the framework. The lack of a static view 

hindered the identification of framework functionality. 

Jinsight does not support analysis of objects’ internal 

state.

The strengths of Jinsight were considered to be: the 

variety of dynamic views; the accuracy of its diagrams 

due to dynamically extracted information; and automatic 

behavioural pattern identification. The weaknesses of 

Jinsight were seen as: difficulty in focussing the 

visualisation due to the size of the diagrams; lack of a 

static representation of the software system; lack of 

generality in its diagrams resulting from a lack of 

statically extracted information; and the inability to 

examine internal object state. 

Fig. 4. The Jinsight execution view. The shaded horizontal lines represent method calls.

Proceedings of the 10th Working Conference on Reverse Engineering (WCRE’03) 
1095-1350/03 $ 17.00 © 2003 IEEE 



4.3. AVID and jRMTool

Fig. 5 shows the summary view of AVID; Fig. 6 shows 

the reflexion model produced by jRMTool. Reflexion 

models are at too high a level of abstraction to show basic 

static structure or object interactions. The architecture and 

high-level interactions were shown clearly in the reflexion 

models. Only a very general, aggregated impression of 

patterns of repeated behaviour and runtime load were 

evident in the reflexion model. The identification of 

design patterns and extension hotspots were both below 

the level of abstraction provided by the reflexion model. 

Change impact can be investigated by altering the input 

high-level model or the mapping from source to high-

level entities. 

Reflexion models are at too high a level of abstraction 

to illustrate object collaborations, control flow, alternative 

functionalities, or object state. They would be useful for 

mapping problems at a higher level of abstraction. 

The strengths of the reflexion model technique are: it 

illustrates the software system architecture; it illustrates 

the high-level interactions in the system; and it enables 

the analyst to validate their model of the system. The 

weaknesses of reflexion models were felt to be: it relies 

on the analyst to provide an adequately accurate high-

level model as input; and it is at too high a level of 

abstraction to answer small-scale questions, such as those 

relating to object interactions or internal state.

Fig. 5. The AVID summary view. Rectangles represent high-level system components. Directed arcs 
represent communication. Histograms illustrate object population. 

Fig. 6. The reflexion model produced by jRMTool. Ovals represent high-level system components. 
Directed arcs represent communication; arc annotations indicate frequency. Solid arcs indicate 

agreement with the analyst’s model; dashed arcs indicate absences from the analyst’s model; dotted 
arcs indicate erroneous communications in the analyst’s model. 

Proceedings of the 10th Working Conference on Reverse Engineering (WCRE’03) 
1095-1350/03 $ 17.00 © 2003 IEEE 



Fig. 7. The Together debugger user interface. The top-left pane shows packages and classes. The top-
right pane shows a class diagram. The middle-right pane shows the program code. The bottom pane is 

the debugger interface. 

4.4. Together debugger

Fig. 7 shows the user interface of the Together

debugger. Although static information is not shown, 

dynamic information can be output by setting breakpoints 

at ‘interesting’ methods or classes. High-level structural 

and behavioural information is above the low level of 

abstraction provided by the debugger. There is no 

functionality to detect repeated patterns of execution, or 

to show runtime component load. Questions relating to 

design patterns and extension hotspots are at too high a 

level of abstraction to be answered using a debugger. 

Basic change impact analysis can be performed by 

comparing the output from executions before and after the 

change.

If breakpoints can be accurately placed at ‘interesting’ 

methods, questions about object collaborations and 

control structure can be answered straightforwardly. The 

lack of a view of the whole system makes mapping 

problems and identifying functionality difficult. The 

dynamically extracted nature of the information means 

that alternative functionalities are not always apparent, 

and the lack of full method signatures make method 

identification confusing. The debugger was able to query 

internal object state conveniently. 

The strengths of the Together debugger are as follows: 

the low level of abstraction would be useful for finding 

code-level errors; dynamically extracted information 

gives precise output; integration with source code makes 

setting and monitoring breakpoints and watches more 

convenient; diagram animation during debugging assists 

comprehension; and the ability to examine internal object 

state. The weaknesses of the debugger were found to be: 

the low level of abstraction makes it impossible to answer 

many higher-level questions; the lack of statically 

extracted information means only a subset of possible 

behaviour is shown; it can be very time-consuming to set 

each breakpoint manually; and it is often difficult to know 

where to set breakpoints. 

5. Related work 

This paper presents two sets of questions that can be 

used in the evaluation of software comprehension tools. A 

number of tool evaluation techniques are discussed in the 

literature, e.g. that of Storey et al. [13]. Storey et al. 

evaluated the usability of three user interfaces to the Rigi

reverse engineering tool by observing users completing a 

set of software maintenance tasks followed by a 

questionnaire and an interview. This technique is similar 

to that discussed in this paper as it evaluates a tool by 

assessing its performance in a series of typical tasks. 

However, Storey et al. used a group of twelve volunteers 

to evaluate the tool, while the evaluation described in this 

paper was carried out by a single user. The small tasks 

involved were intended to be typical of those performed 

by software maintainers working towards a larger goal; a 

trade-off was necessary between experiment time and task 

complexity. They were divided into two groups of four 

tasks, ‘abstract’ and ‘concrete’, which were concerned 

with high- and low-level understanding, respectively. 

These task groupings are similar to the large- and small-

Proceedings of the 10th Working Conference on Reverse Engineering (WCRE’03) 
1095-1350/03 $ 17.00 © 2003 IEEE 



scale tasks used in this paper to typify general software 

comprehension and specific reverse engineering tasks, 

respectively, though their tasks were more 

straightforward. While useful results were obtained in 

terms of the relative usabilities of the tool interfaces, the 

paper concludes by identifying the need for a larger user 

group, more tasks, longer time, and greater experimental 

control. 

Several taxonomies of program visualisation tools 

have been proposed, such as that of Price et al. [2]. Price 

et al. propose a detailed, multi-level taxonomy for 

classifying software visualisation tools. Unlike earlier 

taxonomies that have derived categorisations based on 

observations of tools, Price et al. justify their categories 

(Scope, Content, Form, Method, Interaction, and 

Effectiveness) based on the theory of visualisation tools. 

They then attempt to classify a selection of software 

visualisation tools according to this taxonomy. The 

software visualisation tools in this paper are categorised 

according to four categories that were observed from the 

extant dynamic visualisation tools (extraction, analysis, 

and presentation techniques, and abstraction level). There 

is some commonality between these categories and those 

of the taxonomy of Price et al. While this categorisation 

may be less detailed than the taxonomy of Price et al., it 

provides much of the cogent information that may be 

required when selecting a dynamic visualisation tool for a 

software comprehension or reverse engineering task. 

A recent comparison of static visualisation tools by 

Kollmann et al. [14] compared the class diagram 

synthesis facility of Together with three other tools, 

including the commercial Rational Rose tool. While basic 

diagram generation results were broadly similar across the 

tool set, some associations were not detected by Together.

The research tools in the study by Kollmann et al. were 

able to handle more advanced diagram concepts than the 

commercial tools. 

In addition to the five tools evaluated in this paper, a 

number of other dynamic visualisation tools have been 

developed, most notably Shimba [10] by Systä et al. This 

tool incorporates both statically and dynamically 

extracted information. Statically extracted information is 

displayed using a graph representation. Dynamically 

extracted information is displayed using UML sequence 

diagrams. The sequence diagrams can be used to slice the 

static graphs, thus focussing the visualisation on the area 

of interest. The static graphs can be used to generate 

sequence diagrams at a higher level of abstraction. UML 

statechart diagrams can also be generated to illustrate the 

runtime behaviour of individual objects or methods. With 

an abstraction level of 2-4, Shimba addresses a wider 

range of abstraction levels than any of the other tools in 

this paper. This range of abstraction levels, combined 

with the inclusion of both statically and dynamically 

extracted information, should allow Shimba to perform 

well in both the large- and small-scale questions. Shimba

would be expected to be useful in answering a higher 

proportion of questions than any of the other tools 

considered in this paper. Unfortunately, as stated 

previously, Shimba was not available for evaluation. 

An in-depth discussion of dynamic visualisation 

concepts, techniques, and tools is available in [9]. 

6. Summary and conclusions

Table 1 shows that the tools were more successful in 

answering the small-scale questions and that, on average, 

a tool could answer only a third of the questions. This 

may imply that a single software comprehension tool may 

not be adequate for all tasks. Kazman and Carrière [15] 

posit that this is the case for architectural extraction, and 

Richner and Ducasse [16] say this with regard to design 

recovery. However, it may also suggest that tools are not 

powerful enough and require a combination of both 

statically and dynamically extracted information to 

perform well in all tasks. 

No tools were able to answer either of the large-scale 

questions L7 (What design patterns are present in the 

software system's implementation?) and L8 (Where in the 

software system are the hotspots where additional 

functionality can be added?). While it must be stressed 

that these problems may be specific to frameworks and 

not anticipated by the tool developers, work by Keller et 

al. [17] and others on identifying design patterns, and by 

Schauer et al. [18] and others on identifying hotspots, 

stress the role of the human analyst and reveal that 

detecting design patterns and hotspots is a non-trivial task 

that can benefit from tool support. 

It is clear from the above findings that no one dynamic 

visualisation tool can answer all questions that are typical 

of a software comprehension or reverse engineering 

effort. Some tasks are less well supported than others, and 

some tasks are beyond the capabilities of all current tools. 

This implies that current dynamic visualisation tools are 

not adequate in isolation for supporting software 

comprehension, and must be employed along with other 

software engineering tools if all typical issues are to be 

addressed. The above results also reveal that the 

application of dynamic visualisation tools in combination 

can improve performance. Tools employing higher levels 

of abstraction were more successful in addressing large-

scale questions, while those using a lower level of 

abstraction were more useful for small-scale question; 

tools employing an abstraction level of 2-3 were most 

generally effective. These results also suggest that a 

combination of statically and dynamically extracted 

information may improve performance. The visualisations 

generated from statically extracted data are more general 

but less precise than those obtained from dynamically 

extracted data: statically extracted visualisations are wide 

Proceedings of the 10th Working Conference on Reverse Engineering (WCRE’03) 
1095-1350/03 $ 17.00 © 2003 IEEE 



but shallow, while dynamically extracted visualisations 

are narrow but deep. The lack of a single dynamic 

visualisation tool that performs well in all tasks is likely 

to be a large contributory factor in the lack of use of 

dynamic visualisation tools outwith the context of 

research. Analysts are evidently using alternative types of 

tool to obtain the information they require for software 

comprehension. 

A larger case study involving more tools is required 

before further conclusions can be drawn regarding the 

effectiveness of the presentation techniques, analysis 

techniques (other than abstraction), or dynamic extraction 

techniques. Future work should investigate tools that 

incorporate both statically and dynamically extracted 

information and allow the analyst to move conveniently 

between abstraction levels; such tools would have the 

potential to address many of the issues identified in this 

paper. Dynamic visualisation tools that incorporate design 

pattern and hotspot recovery provide another interesting 

research prospect. 

References

[1] E. Stroulia and T. Systä, “Dynamic Analysis for Reverse 

Engineering and Program Understanding”, ACM SIGAPP 

Applied Computing Review 10(1), ACM Press, New York, NY, 

2002, pp. 8-17. 

[2] B.A. Price, R.M. Baecker, and I.S. Small, “A Principled 

Taxonomy of Software Visualization”, Journal of Visual 

Languages and Computing 4(3), Elsevier, Amsterdam, 1993, pp. 

211-266.

[3] R. E. Johnson, “Documenting Frameworks using Patterns”, 

Proceedings of the 7th Conference on Object-Oriented 

Programming, Systems, Languages, and Applications, ACM 

Press, New York, NY, 1992, pp. 63-76. 

[4] E. Gamma and T. Eggenschwiler, JHotDraw 5.1,

http://members.pingnet.ch/gamma/JHD-5.1.zip, 1998. 

[5] R.J. Walker, G.C. Murphy, B. Freeman-Benson, D. Wright, 

D. Swanson, and J. Isaak, “Visualizing Dynamic Software 

System Information through High-Level Models”, Proceedings 

of the 13th Conference on Object-Oriented Programming, 

Systems, Languages, and Applications, ACM Press, New York, 

NY, 1998, pp. 271-283. 

[6] G.C. Murphy, D. Notkin, and K.J. Sullivan, “Software 

Reflexion Models: Bridging the Gap between Design and 

Implementation”, Transactions on Software Engineering 27(4),

IEEE CS Press, Los Alamitos, CA, 2001, pp. 364-380. 

[7] TogetherSoft Corporation, Together ControlCenter,

http://www.togethersoft.com/products/controlcenter/, 2001. 

[8] W. De Pauw, E. Jensen, N. Mitchell, G. Sevitsky, J. 

Vlissides, and J. Yang, “Visualizing the Execution of Java 

Programs”, Proceedings of the International Seminar on 

Software Visualization, LNCS 2269, Springer-Verlag, Berlin, 

2001, pp.151-162. 

[9] M.J. Pacione, “A Review and Evaluation of Dynamic 

Visualisation Tools”, Technical Report EFoCS-50-2003, 

Department of Computer and Information Sciences, University 

of Strathclyde, Glasgow, 2003. 

[10] T. Systä, K. Koskimies, and H. Müller, “Shimba – an 

Environment for Reverse Engineering Java Software Systems”, 

Software – Practice and Experience 31(4), Wiley, New York, 

NY, 2001, pp. 371-394. 

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design 

Patterns: Elements of Reusable Object-Oriented Software,

Addison Wesley, Boston, MA, 1995. 

[12] D. Kirk, M. Roper, and M. Wood, “Understanding Object-

Oriented Frameworks – An Exploratory Case Study”, Technical 

Report EFoCS-42-2001, Department of Computer and 

Information Sciences, University of Strathclyde, Glasgow, 2001. 

[13] M.-A.D. Storey, K. Wong, P. Fong, D. Hooper, K. 

Hopkins, and H.A. Müller, “On Designing an Experiment to 

Evaluate a Reverse Engineering Tool”, Proceedings of the 3rd

Working Conference on Reverse Engineering, IEEE CS Press, 

Los Alamitos, CA, 1996, pp. 31-40. 

[14] R. Kollmann, P. Selonon, E. Stroulia, T. Systä, and A. 

Zündorf, “A Study on the Current State of the Art in Tool-

Supported UML-Based Static Reverse Engineering”, 

Proceedings of the 9th Working Conference on Reverse 

Engineering, IEEE CS Press, Los Alamitos, CA, 2002, pp. 22-

33.

[15] R. Kazman and S. J. Carrière, “Playing Detective: 

Reconstructing Software Architecture from Available 

Evidence”, Journal of Automated Software Engineering 6(2),

Kluwer, Dordrecht, 1999, pp. 107-138. 

[16] T. Richner and S. Ducasse, “Using Dynamic Information 

for the Iterative Recovery of Collaborations and Roles”, 

Proceedings of the 18th International Conference on Software 

Maintenance, IEEE CS Press, Los Alamitos, CA, 2002, pp. 34-

43.

[17] R.K. Keller, R. Schauer, S. Robitaille, and P. Pagé, 

“Pattern-Based Reverse-Engineering of Design Components”, 

Proceedings of the 21st International Conference on Software 

Engineering, ACM Press, New York, NY, 1999, pp. 226-235. 

[18] R. Schauer, S. Robitaille, F. Martel, and R.K. Keller, “Hot 

Spot Recovery in Object-Oriented Software with Inheritance 

and Composition Template Methods”, Proceedings of the 15th

International Conference on Software Maintenance, IEEE CS 

Press, Los Alamitos, CA, 1999, pp. 220-229. 

Proceedings of the 10th Working Conference on Reverse Engineering (WCRE’03) 
1095-1350/03 $ 17.00 © 2003 IEEE 


