

SOFTWARE VISUALISATION FOR OBJECT-ORIENTED PROGRAM COMPREHENSION
Michael J. Pacione
Department of Computer and Information Sciences, University of Strathclyde, Glasgow

Key words to describe the work: Software abstraction, program comprehension, software visualisation
Key results: Current software visualisation tools cannot address the full range of software comprehension tasks
when used individually. The level of abstraction at which information is presented and the choice of statically or
dynamically extracted information determine the tasks for which a tool is suitable.
How does the work advance the state of the art?: The aim of this research is to improve the effectiveness of
visualisation techniques for large-scale software understanding based on a model with diagrams arranged in
abstraction hierarchies, interrelated facets, and the integration of statically and dynamically extracted information.
Motivation (problems addressed): Previous research in software visualisation was often ad hoc in nature and
focused on specific sub-problems of comprehension while failing to consider the goals of visualisation. Most tools
are relatively tightly focussed, lack the capability to integrate statically and dynamically extracted information,
and fail to address the difficulties in comprehension caused by inherent features of the object-oriented paradigm.

1. Context, problem, solution
Software visualisation is the process of modelling
software systems for comprehension [3]. The
comprehension of software systems both during and
after development is a crucial component of the
software process [4]. The complex interactions
inherent in the object-oriented paradigm make
visualisation a particularly attractive comprehension
technique, and the large volume of information
typically generated during visualisation necessitates
tool support.

A recent study by the author [2] revealed that
current visualisation tools address only specific
software comprehension and reverse engineering
issues. Most are relatively tightly focussed, lack the
capability to integrate statically and dynamically
extracted information, and fail to address the
difficulties in comprehension caused by inherent
features of the object-oriented paradigm.

In order to address the disadvantages with current
visualisation techniques, an approach is proposed that
integrates a formal model of abstraction hierarchies,
structural and behavioural perspectives, and statically
and dynamically extracted information.

2. Prior research
Prior research by the author [2] evaluated the
performance of dynamic visualisation tools in a
realistic software comprehension scenario. A range of
available tools was evaluated by assessing their
performance in a number of dynamic visualisation
tasks. The tasks took the form of questions that an
analyst would find it useful to be able to answer
about a software system, such as ‘How do the high-
level components of the software system interact?’
and ‘How does the state of an object change during
an interaction?’.

The distinguishing properties of the tools in the
study were the extraction, analysis, and presentation
techniques of the tools. These properties help define
the level of abstraction of a visualisation tool.
Abstraction is the process of producing a simplified
representation that emphasises the important
information while suppressing details that are
(currently) uninteresting, with the goal of reducing
complexity and increasing comprehensibility. In this
earlier work, an ordinal scale with which the level of
abstraction of such tools (and also other tools,
diagrams, and documentation) can be categorised was
proposed. At the microscopic end of the scale,
debuggers are representative of the lowest level of
abstraction that a dynamic analysis tool can produce.
At the opposite, macroscopic, end are tools that
provide a broad overview of an entire software
system at a high level of abstraction, such as
aggregate information about object population,
memory usage, load distribution, or deployment. The
middle portion of the scale ascends from tools that
illustrate method calls and returns, through tools
giving an object- or class-level representation of the
system, to tools that provide an architectural-level
view of the system.

The study found that tools of similar abstraction
levels using different extraction and presentation
techniques were able to answer different questions. It
also showed that the level of abstraction of a tool’s
output was important in determining which questions
the tool could answer. The results revealed that an
abstraction level slightly below the midpoint of the
scale was optimal in terms of answering the most
questions.

On average, a tool could address only a third of the
questions, and the most successful tool addressed just

over half. However, if all five of the tools in the study
were used in combination, it should be possible to
address almost all of the 15 tasks. This may imply
that a combination of both statically and dynamically
extracted information and a range of abstraction
levels is required in order for a tool to perform well in
all tasks.

3. Proposed solution
In order to combine the benefits of these alternative
approaches, this research will investigate a multi-
faceted, three-dimensional abstraction model for
software visualisation. Similar to the abstraction scale
proposed in our earlier work, the first dimension of
the model will consist of an abstraction scale with a
number of levels from microscopic to macroscopic.
This arrangement allows the analyst to explore the
software system at the level(s) of abstraction
appropriate to the comprehension task they are
undertaking.

The second dimension of the new model will
consist of a number of facets [1], each representing
an ‘interesting’ aspect of the system, e.g. behaviour,
structure, or data. The use of interrelated facets
allows the analyst to examine the structure,
behaviour, or data of the software system individually
or in combination, allowing them to focus the
visualisation on the information appropriate to their
query. Each abstraction level of each facet is a view
and consists of a name, a description, a set of entities,
a set of relationships between those entities, and a set
of diagrams that illustrate software at that level of
that facet. This arrangement will provide the analyst
with a clearer view of the software under analysis.

The third dimension of the model will consist of
static and/or dynamic analyses of the software. Static
analyses examine the program code, while dynamic
analyses monitor the system’s runtime behaviour.
Consequently, static analyses consider the entire
software system at a less precise level of detail than
dynamic analyses, which consider only a subset of
the system in more detail. This third dimension
allows the broad coverage of static analysis to be
combined with the detail of dynamic analysis without
their attendant disadvantages.

There are a number of key research challenges
associated with this solution. One such challenge is
the way in which the visualisation information will be
stored as a model, and how this will be used to
generate view hierarchies. Another challenge is the
definition of the inter- and intra-hierarchy
relationships between the views. Identifying which

views are appropriate and useful for which
comprehension tasks is a further challenge. The way
in which statically and dynamically extracted
information is combined and presented will also
require investigation.

4. Contributions
It is proposed that this work will increase the utility
of visualisation for software comprehension. The
contributions of this research to date include: the
five-level abstraction scale for software
comprehension; the proposal and specification of a
range of practical comprehension questions as a basis
for tool evaluation; a critique of dynamic
visualisation tools; and an initial model based on
abstraction, facets, and the integration of statically
and dynamically extracted information.

5. Future work
We are currently investigating the use of abstraction
in software visualisation and in visualisation in
general, techniques for integrating statically and
dynamically extracted information, modelling
techniques applicable to software, and effective
methods for exploring and querying visualisations. A
fully specified abstraction model to underpin
visualisation across a full range of software
comprehension activities will then be proposed, along
with a formalism to describe the model, relate the
various views, and allow the combination of
information from different views. This model will be
evaluated in a similar way to our previous work using
typical software comprehension questions, possibly
with multiple subjects and studies. The feasibility of
practical tool support based on this model will be
investigated.

References
[1] J.H. Jahnke, H.A. Müller, A. Walenstein, N. Mansurov, and
K. Wong, “Fused Data-Centric Visualizations for Software
Evolution Environments”, Proceedings of the 10th International
Workshop on Program Comprehension, IEEE CS Press, Los
Alamitos, CA, 2002, pp. 187-196.
[2] M.J. Pacione, M. Roper, and M. Wood, “A Comparative
Evaluation of Dynamic Visualisation Tools”, Proceedings of the
10th Working Conference on Reverse Engineering, IEEE CS
Press, Los Alamitos, CA, 2003, pp. 80-89.
[3] B.A. Price, R.M. Baecker, and I.S. Small, “A Principled
Taxonomy of Software Visualization”, Journal of Visual
Languages and Computing 4(3), Elsevier, Amsterdam, 1993, pp.
211-266.
[4] A. von Mayrhauser and A.M. Vans, “Program
Comprehension During Software Maintenance and Evolution”,
IEEE Computer 28(8), IEEE CS Press, Los Alamitos, CA, 1995,
pp. 44-55.

	References

