Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

A novel software visualisation model to support software comprehension

Pacione, M.J. and Roper, M. and Wood, M. (2004) A novel software visualisation model to support software comprehension. In: 11th Working Conference on Reverse Engineering, 2004-11-08 - 2004-11-12.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Current software visualisation tools do not address the full range of software comprehension requirements. This paper proposes a novel software visualisation model for supporting object-oriented software comprehension that is intended to address the shortcomings of existing tools. We discuss the previous work that prompted us to develop this model. An initial model is then presented, based on multiple levels of abstraction, multiple perspectives of the software system, and the integration of statically and dynamically extracted information. We review the evaluation tasks used in our previous work and those from the software visualisation and comprehension literature to produce a refined set of evaluation tasks. We then use these tasks to perform an initial assessment of the proposed model. The refined model is then defined more formally. Finally, a concrete example of the use of the model to generate abstraction hierarchies is discussed. We conclude that a visualisation model incorporating a hierarchy of interrelated abstraction levels, combined with structural and behavioural perspectives of the software, will provide effective support for software comprehension.