

1

UPGRADE

 is the European Online Magazine
for the Information Technology Professionals,
published bimonthly at
<http://www.upgrade-cepis.org/>.

Publisher

UPGRADE is published on behalf of CEPIS (Council of
European Professional Informatics Societies,
<http://www.cepis.org/>) by NOVÁTICA
<http://www.ati.es/novatica/>, journal of the Spanish CEPIS
society ATI (Asociación de Técnicos de Informática
<http://www.ati.es/>).
UPGRADE is also published in Spanish (full issue printed, some
articles online) by NOVÁTICA, and in Italian (abstracts and some
articles online) by the Italian CEPIS society ALSI
<http://www.alsi.it> and the Italian IT portal Tecnoteca
<http://www.tecnoteca.it/>.
UPGRADE was created in October 2000 by CEPIS and was first
published by NOVÁTICA and INFORMATIK/INFORMATIQUE,
bimonthly journal of SVI/FSI (Swiss Federation of Professional
Informatics Societies, <http://www.svifsi.ch/>).

Chief Editors

François Louis Nicolet, Zürich <nicolet@acm.org>
Rafael Fernández Calvo, Madrid <rfcalvo@ati.es>

Editorial Board

Prof. Wolffried Stucky, CEPIS President
Fernando Piera Gómez and
Rafael Fernández Calvo, ATI (Spain)
François Louis Nicolet, SI (Switzerland)
Roberto Carniel, ALSI – Tecnoteca (Italy)

English Editors:

 Mike Andersson, Richard Butchart, David
Cash, Arthur Cook, Tracey Darch, Laura Davies, Nick Dunn,
Rodney Fennemore, Hilary Green, Roger Harris, Michael Hird,
Jim Holder, Alasdair MacLeod, Pat Moody, Adam David Moss,
Phil Parkin, Brian Robson.

Cover page

 designed by Antonio Crespo Foix, © ATI 2002

Layout:

 Pascale Schürmann

E-mail addresses for editorial correspondence:
<nicolet@acm.org> and <rfcalvo@ati.es>

E-mail address for advertising correspondence:
<novatica@ati.es>

Copyright

© Novática. All rights reserved. Abstracting is permitted with
credit to the source. For copying, reprint, or republication
permission, write to the editors.

The opinions expressed by the authors are their exclusive
responsibility.

ISSN 1684-5285

The European Online Magazine for the IT Professional
http://www.upgrade-cepis.org

Vol. III, No. 5, October 2002

Joint issue with N

OVÁTICA

2 AI: Past, Present and Future

 – Federico Barber, Vicente J. Botti, and Jana Koehler

The guest editors present the issue and include a list of useful references for those interested in
knowing more about Artificial Intelligence.

6 Spoken Communication with Computers

 – Francisco Casacuberta-Nolla

This article deals with the development of systems which enable spoken interaction with computers,
of widespread use in speech recognition systems, translation systems, etc.

10 Progress in AI Planning Research and Applications

 – Derek Long and Maria Fox

In this paper the autors sketch the foundations of planning as a sub-field of Artificial Intelligence
and the history of its development over the past three decades, and discuss some of the recent
achievements within the field.

25 Trends in Automatic Learning

 – Ramón López de Mántaras

This article looks at intelligent IT systems’ learning capacity, one of the fundamental characteristics
of intelligence, and the techniques they employ to develop it presently.

32 Knowledge-Based Systems

 – José Mira-Mira and Ana E. Delgado-García

In this article Knowledge Engineering is presented with special emphasis on methodological
aspects (Knowledge Based Systems, Expert Systems), with the aim of approaching the rigour of
other engineering disciplines.

39 Cooperating Physical Robots and Robotic Football

 – Bernhard Nebel and Markus Jäger

In this article an analysis is made of the techniques and applications related to physical robots in
tasks carried out in real environments, where the ability of the robots to cooperate correctly is
especially important.

46 Autonomous Agents and Multi-Agent Systems

 – Carles Sierra

This article presents the current state of multi-agent systems and their main applications.

53 Artificial Intelligence and Education: an Overview

 – Maite Urretavizcaya-Loinaz and Isabel Fernández de Castro

This paper offers an overview of the different contributions AI is making to the world of educational
IT, and a review of intelligent educational systems.

Artificial Intelligence: Technology with a Future

Guest Editors: Federico Barber, Vicente J. Botti, and Jana Koehler

Coming issue:
“Security in
E-Commerce/Business”

Artificial Intelligence: Technology with a Future

© Novática UPGRADE Vol. III, No. 5, October 2002 10

Progress in AI Planning Research and Applications

Derek Long and Maria Fox

Planning has made significant progress since its inception in the 1970s, in terms both of the efficiency and
sophistication of its algorithms and representations and its potential for application to real problems. In this
paper we sketch the foundations of planning as a sub-field of Artificial Intelligence and the history of its
development over the past three decades. We will then discuss some of the recent achievements within the
field and provide some experimental data demonstrating the progress that has been made in the application
of general planners to realistic and complex problems. We conclude by identifying some of the open issues
that remain as important challenges for future research in planning.

Keywords: AI, Planning of Actions, Plans, Scheduling and
Planning

Introduction
Planning is a sub-field of Artificial Intelligence (AI),

explored by researchers in the AI community for more than
three decades. Newell and Simon’s work on GPS [Newell/Si-
mon 1963], Green’s QA3 [Green 1969] and McCarthy’s situa-
tion calculus [McCarthy/Hayes 1969] helped to define the clas-
sical planning problem and many of the basic assumptions
made then still influence planning research today. This paper
surveys the objectives of the research field, the progress of re-
searchers towards meeting them and some of the current activ-
ities and themes in the area. It also considers the extent to
which modern planning techniques are ready for wider exploi-
tation and what still remains to be achieved.

In the early days of AI research scientists pursued a broad
and ambitious, if somewhat ill-defined, objective of creating an
intelligent machine. Reasoning capabilities were seen as
central to this objective, but were expected to be based on an
interlocking collection of generic mechanisms. This can be
seen in the application of theorem proving as a general technol-
ogy to all kinds of reasoning problems, including planning. As
the subject has developed it has become clear that generic
reasoning, if it can ever be achieved, can only be built on a
thorough understanding of more specific examples of human
problem-solving enterprises. Consequently, researchers have
explored different areas of problem-solving reasoning and AI
has splintered into a collection of different sub-fields. Planning
emerged as a specific sub-field with the seminal work of Fikes
and Nilsson [Fikes/Nilsson 1971] on the STanford Research
Institute Problem Solver (STRIPS).

This paper begins, in section 2, with a description of the plan-
ning problem itself and the constraints that have been imposed
to make tractable versions of it. In order to understand the foun-
dations for the most recent developments in planning, it is help-
ful to review the history of research in planning – this is
covered in section 4. In sections 5 and 6 the more recent devel-
opments in the field are described. Finally, in section 7, some

of the many problems that remain to be solved, or solved more
successfully, are considered.

The Planning Problem
To make the planning problem accessible, it is necessary to

have a precise definition of what the problem is and what
constitutes a solution to an instance of the problem. In defining
the problem, several simplifications have been made that do not
always characterise planning problems in general application,
but make the core of what remains a more manageable starting
point for research. Different researchers have adopted slightly

1 2

Derek Long is a Lecturer in Computer Science at the Univer-
sity of Durham (United Kingdom). His research interests lie in
planning, and applications of planning systems. Dr Long co-
chaired the 3rd International Planning Competition, held at AIPS
2002. He also co-developed the STAN planning system and the
TIM planning domain analysis system, establishing the concept
of generic types and their role in planning domain construction
and decomposition. Within the Hybrid STAN extension of the
original STAN system, he and his colleague Maria Fox have
demonstrated the potential to automatically configure problem-
solving technology to support a planning system by attacking
sub-problems using specialised solvers. He is chairman of the
UK Planning and Scheduling Special Interest Group, a group that
holds an annual meeting attracting international participation.
<d.p.long@durham.ac.uk>

Maria Fox is Reader in Computer Science at the University of
Durham (United Kingdom). Prior to joining Durham University
Dr. Fox was a lecturer at University College London. Her early
work in AI Planning considered the problems of generating and
refining abstract plans through soundness-preserving transforma-
tions. More recently she has focused on representation and rea-
soning issues in temporal and metric planning. With Derek Long
she co-chaired the third international planning competition which
stressed planning in temporal domains. She has developed plan-
ning algorithms and domain analysis techniques for a range of
planning domain description languages and is currently working
in the area of autonomous planning and execution.
<maria.fox@durham.ac.uk>

Artificial Intelligence: Technology with a Future

11 UPGRADE Vol. III, No. 5, October 2002 © Novática

different formulations of the problem, but the following is the
most widely adopted starting point:

A planning problem is described by a collection of actions,
each characterised by their preconditions (what must be true in
order for the action to be executed) and their postconditions
(which describe the effect of execution of the action), an initial
state of the world and a description of the goals to be achieved.
The problem is solved by finding actions that will transform the
given initial state into a state satisfying the given goals.

It can be observed that this action-centric view of the plan-
ning problem is influenced by the notion of state, or situation,
and of transition between states. This view has a very strong
heritage based on McCarthy’s development of the situation
calculus. This calculus describes how situations, described in a
first order language, are affected by actions performed on them
by an executive agent. Effect axioms describe how actions
change the situations in which they are applied into new situa-
tions while frame axioms describe what aspects of a situation
remain unaffected as actions are applied. These axioms are
specified in terms of the relations and predicates that describe
configurations of objects in the world, together with situation
variables that enable the facts associated with one situation to
be distinguished from those associated with a successor situa-
tion. Axioms are universally quantified over situations. Given a
complete set of such axioms it is possible to deduce the situa-
tion that results from the application of a chain of actions and
to determine which actions to apply to obtain a desired state
change.

An important shortcoming of the situation calculus is the
difficulty of defining a complete set of effect and frame axioms
for a non-trivial world. Effect axioms are easier to define
because the number of actions that need to be described is
contained and they are usually identified with only a small
number of positive state changing effects. Frame axioms, on
the other hand, are extremely difficult to define exhaustively
because the number of properties of a situation that do not
change when an action is applied is far greater than the number
that do. Furthermore, it is not natural to think about the world
in negative terms so there is a great danger of providing only a
partial collection of frame axioms which would lead to
unsound reasoning within the calculus. This problem is
referred to as the frame problem.

The STRIPS system made a very important contribution to
Planning research by introducing the Strips Assumption as a
way to avoid the complexity of the frame problem for the
purposes of planning within the situation calculus. The
assumption is that the only changes that arise on application of
an action to a situation are those that are explicitly mentioned
as positive effects of the action. All other relations and predi-
cates, associated with the situation in which the action is
applied, are automatically deduced to hold in the successor
situation. The STRIPS project introduced a simple syntax for
defining action schemas, in terms of the preconditions, add
effects and delete effects of the action. An example can be seen
in Figure 1. Despite the many advances that have been made in
planning research over the years the STRIPS assumption
continues to be a fundamental principle in the modelling of

planning problems and an important influence on the way plan-
ning algorithms are designed.

Planning problems are fundamentally dynamic in structure –
an initial situation is presented, a goal is defined and a plan is
seen as a sequence of (sets of) state changes applied over time.
It is therefore natural to interpret collections of action schemas
as defining the transitions in a parameterised automaton (see
Figure 2) and a plan as the transitions traversed by an accepting
trace through the instantiated automaton. This view is in
contrast with the static view imposed by the situation calculus,

Action LOAD ?object ?container
?location

Precondition:
at(?object,?location)

at(?container,?location)

empty(?container)

Add:
inside(?object,?location)

Delete:
at(?object,?location)

empty(?container)

Action UNLOAD ?object ?container
?location

Precondition:
at(?container,?location)

inside(?object,?location)

Add:
at(?object,?location)

Delete:
inside(?object,?container)

empty(?container)

Action MOVE ?container ?start
?destination

Precondition:
at(?container,?start)

link(?start,?destination)

Add:
at(?container,?destination)

Delete:
at(?container,?start)

Initially:
at(PickUp,Home)

at(Box,Office)

link(Home,Town)

link(Town,Home)

link(Town,Office)

link(Office,Town)

Goal: at(Box,Home)

Figure 1: Simple domain description and problem instance.
Terms marked with "?’’ are variables.

Artificial Intelligence: Technology with a Future

© Novática UPGRADE Vol. III, No. 5, October 2002 12

in which theorem-proving determines whether a particular
collection of constraints is consistent and the passage of time is
modelled through the use of state variables at the object level.
A goal state is achievable if the collection of effect and frame
axioms are satisfiable for some value of the state variable asso-
ciated with the goal. Both the dynamic and static views have
influenced the design of algorithms for planning, although the
dynamic view has dominated approaches taken to representa-
tion of planning problems.

This dominance is apparent in the family of Planning
Domain Description Languages (PDDL1.2 [McDermott 1998]
and PDDL2.1 [Fox/Long 2002]) that have been proposed as
standards for modelling planning problems. These languages
are based on the STRIPS assumption and support the model-
ling of a planning problem in terms of a compact representation
of the finite state automaton that describes its behaviour. As is
discussed in the following sections, this style of modelling can
be extended to support reasoning about continuous as well as
logical change, and can provide sufficient expressive power for
the modelling of very complex realistic planning problems.
The question of how algorithms might be developed to enable
plans to be found, given such models, is a separate one and is
discussed below.

Foundations of Planning
The action-centred view of problem representation makes

a number of simplifying assumptions which define classical
planning. First, it is assumed that the evolution of action
sequences, applied to a completely known initial situation, can
be completely and correctly predicted as though no external
influences were operating in the world. Second, planning is the
task of constructing a single completed plan that achieves the
goal, prior to the execution of any part of it. A third, related

point, is that the classical planning formulation assumes that
the goals are known before planning starts – planners do not set
their own goals and goals do not change as execution progress-
es. This makes classical planning a poor technology for realis-
tic problems in which goals arise continually and important
things can happen outside the control of the planner. Finally, in
classical planning, in which numeric reasoning is excluded,
plan quality is determined solely by the number of actions in
the plan. This is, of course, a very simplistic measurement of
plan quality and one that is further discussed in section 6,
where recent work going beyond this assumption is examined.

Even under these simplifying assumptions plan generation is
computationally a very hard problem. Under the assumption
that the space of reachable states is finite planning belongs to
the PSPACE-hard class of problems meaning that the number
of states that must be considered in attempting to find a path
from the initial state to the goal is likely to be exponential in the
size of the description of the planning problem. The space of
reachable states is certainly exponential in the size of the
problem description (the description is schematic whilst the
state space is fully instantiated) so the task of a planning algo-
rithm is to find a path between the initial situation and one
satisfying the goal, whilst exploring as little as possible of the
state space in the process. This is what makes plan generation
different from the problem of finding a shortest path in a graph
– the graph is too big to be built explicitly (see Figure 3) so a
plan generation algorithm must intelligently build only that
part of it in which the solution lies.

The intelligent exploration of the problem state space
depends on the ability of the planning algorithm to exploit
powerful heuristics or control knowledge to guide its search.
Many recent strides have been made in planning because of the
discovery of informative heuristics which can be very effective

in directing search towards a solution.
Planning research has traditionally

relied on simple and relatively unstruc-
tured models of the problem and placed
the research emphasis on the develop-
ment of algorithms and powerful heuris-
tic control methods. Although it has been
recognized [Fox/Long 1998] [Gerevi-
ni/Schubert 1998] that a model typically
contains hidden structure that can be
exploited by a planner the tendency has
been to persist with the construction and
communication of traditional models
and, either to supplement the traditional
model with problem-specific control
rules [Bacchus/Kabanza 2000] [Kvarn-
strom/Doherty 2000] [Nau et al. 1999],
or to use automated analysis to extract
the hidden structure and make it accessi-
ble to the reasoning mechanisms of the
planner [Fox/Long 2000] [Porteous
2001] [Gerevini/Schubert 1998]. The
recent successes of planners using prob-
lem-specific control rules (see section

3

Figure 2: Illustration of a fragment of a state space for a planning problem. Note that
the same action can cause transition between different pairs of states, with
untouched parts of the start state preserved by the STRIPS assumption.

B: Pre: P, Q, R
Add: T
Del: Q, R

C: Pre: P, Q
Add: U, V
Del: P, Q

D: Pre: P, T
Add: U
Del: P

E: Pre: S, T
Add: V, W
Del: S, T

A: Pre: P
Add: Q
Del: P

P, Q, R

Q, R, S

P, T

R, U, V

T, U

V, W

X

Initial state

A

B

C

S, T

A

E

D

A state satisfying goals

Artificial Intelligence: Technology with a Future

13 UPGRADE Vol. III, No. 5, October 2002 © Novática

4.5) raises the question of how much modelling can impact on
search efficiency. Other AI research communities have focused
on exploring the extent to which modelling choices can expe-
dite the solution of a problem [Borrett/Tsang 2001] [West-
fold/Smith 2001]. Certainly, the more human expertise is
embedded in the model the less discovery has to be made by the
solver (whether planner, constraints problem solver, schedul-
ing algorithm or other), but the burden on the human expert can
be prohibitive. The correctness of the reasoning system
depends fundamentally on the correctness of the model, so
errors in the modelling can be catastrophic. The traditional
approach taken in planning has been to limit this burden as far
as possible, providing a standard means for modelling of
action-centred behaviour and placing the problem-solving
emphasis on automated techniques.

The complexity of the search problem, and the difficulty of
identifying powerful and general search control methods, has
tended to limit the scope for fielded applications of planning
technology. A central problem is that all decision making issues
are thrown into the same brute-force, often unexpected, search
strategy and a planner quickly becomes unable to cope with the
branching factor of the problem. This approach, has been ques-
tioned by researchers addressing real, and often highly struc-
tured, problems. Indeed, some researchers [Ingham et al. 2001]
have argued that, whilst a planner must be left free to discover
novel solutions to some parts of a problem there will always be
other parts the solutions of which can be prescribed quite close-
ly. Furthermore, a problem expert might be able to provide an
overall flexible plan structure which would guide and constrain
the search behaviour of a plan generation system whilst leaving
many choices to be resolved in closer contact with an execu-
tive. The standard languages for representing planning prob-
lems do not provide this facility, but researchers in the related
field of model-based reasoning have designed languages, such
as RMPL [Ingham et al. 2001], which support this purpose and
might provide a basis for combining the power of plan genera-
tion with the ability to exploit the knowledge of a problem
expert.

The Development of Planning Research
A wide variety of planning algorithms has been developed

since STRIPS, using different search strategies and exploring
different search spaces. In the 1970s and 1980s effort was fo-
cused on puzzle-like problems, such as the blocks world, tile

puzzles and the towers of Hanoi, all of which involve highly
inter-dependent actions and constraints. The objective was to
find optimal plans (plans that would achieve the goal state
using as few action instances as possible) and planning
approaches were considered flawed if they were fundamentally
unable to achieve optimality in particular puzzle domains. For
example, the well-known Sussman anomaly led to the develop-
ment of least-commitment planning as an alternative to the
sequential planning style of STRIPS. The Sussman anomaly
(depicted in Figure 4) is a feature of the blocks world demon-
strating that goals cannot always be decomposed. Similarly, the
towers of Hanoi problem shows that progress cannot always be
made monotonically.

Although considerable progress was made in the develop-
ment of planning algorithms, and in the understanding of their
formal properties, by means of consideration of these puzzles,
planning did not make much progress towards practical appli-
cation during these years. Indeed, the wider AI community
raised questions about the utility of classical planning given its
apparent inability to dispose even of puzzle problems of little
or no practical interest. During this period work began to
emerge on the impressive results that could be obtained in the
solution of practical problems by planners equipped with prob-
lem-specific knowledge [Currie/Tate 1991] [Wilkins/desJar-
dins 2000] [Stefik 1981]. This gave rise to a tension in the
planning research community between classical, domain inde-
pendent, and application-oriented planning. The advantages of
taking a classical approach is that the techniques developed are
completely general and reusable, whilst the advantages of the
application-oriented approach is that excellent (though not
reusable) results can be obtained in specific problem domains.

This tension has always been constructive because it has
helped to drive classical planning research towards the solution
of ever more realistic problems. In the last ten years incredible
strides forward have been made in terms of the complexity of
problems that can be addressed, the efficiency with which
solutions can be generated and the quality of those solutions. In
the early 1990s no classical planner could produce plans of
more than, say, thirty steps. Ten years later such planners can
produce plans consisting of hundreds of steps in a fraction of
the time it used to take to produce plans an order of magnitude
shorter. Furthermore, modern planners are capable of handling
problems that are much closer to practical utility than the
puzzle problems of old.

4

FreeCell 4 cards per suit
13 cards per suit

1.1 x 1011 initial states
1.75 x 1064 initial states

Logistics Largest problem in 1st IPC
Largest problem in 2nd IPC

(fully automated)

3 x 1023 states (solved in more than 13 minutes)

2 x 1087 states (solved in 80 seconds)

Figure 3: The table gives a very brief indication of the sizes of planning problem state-spaces. FreeCell is a problem based on the
well-known solitaire card game, introduced as a planning benchtest in the 2nd International Planning Competition (IPC) [Bacchus
2000]. The Logistics problem is a commonly used benchtest for planning systems. It is not easy to estimate the size of the state
space in all problems. For FreeCell the number of essentially distinct initial states gives an impression of the size of the state space.
In the Logistics domain it is easier to compute the number of different reachable states. It is interesting to see the contrast in the
performances between the 1st IPC (1998) and 2nd IPC (2000).

Artificial Intelligence: Technology with a Future

© Novática UPGRADE Vol. III, No. 5, October 2002 14

One of the most important forces driving these developments
has been the biennial planning competition which started in
1998. The first competition was organized and run by Drew
McDermott in consultation with an international committee of
experts whose task it was to standardize the representation
language to be used by planners and to define a range of bench
mark problems. This competition led to the emergence of the
PDDL family of domain description languages. The bench
mark problems used in 1998 still owed much to the puzzle
problem heritage, although the Logistics domain, popularized
by Kautz and Selman [Kautz/Selman 1998], was used to begin
to push planners towards the solution of problems with a more
practical emphasis. Only five competitors participated in this
competition, but it led to an enormous resurgence of interest in
classical planning and its potential for application. One of the
most interesting consequences of the 1998 competition was
that emphasis on plan optimality began to give way to a will-
ingness to trade off optimality for speed of plan generation.
Optimality is a property of plans that is too hard to check, and
because of the difficulty of producing guaranteed optimal
plans, plans produced by systems that do not guarantee
optimality cannot be evaluated in terms of their distance from
optimal. However, the heuristic forward search planner HSP
[Bonet et al. 1997] emerged as a very exciting future planning
technology because of its ability to find “acceptable” plans very
quickly (where a plan might be considered acceptable if it is no
more than, say, ten per cent longer than competitive plans).

This led to an intense period of research activity into heuristic
forward search.

The two following competitions, in 2000 and 2002, intro-
duced a range of new bench marks emphasising practical prob-
lem features. In particular, in 2002 problems involving numeric
and temporal reasoning were introduced and planners were
required to reason with intervals of time and the consumption
and production of numeric resources. Some of the bench marks
introduced in 2002 began to closely approximate problems of
real practical interest. For example the Timed Rover domain,
shown in Figure 4, closely models the planetary rover explora-
tory problems being researched into by NASA and other space
agencies (see also section 6). Planning has moved from being a
puzzle-solving technology to being the foundation of autono-
mous behaviour.

In the following sections we review some of the advances in
planning algorithms that have supported the developments
outlined above.

4.1. Graphplan
Graphplan [Blum/Furs 1995] excited a great deal of interest

when it was introduced because it constitutes an approach to
planning that was radically new at the time (in the early 1990s).
Graphplan constructs and then searches a compact reachability
analysis of the problem state space. The compactness of the
representation, together with the informative nature of the data
that can be accumulated during both construction and search,

Figure 4: Examples of planning domains. (i) Simple blocks world (the problem shown is Sussman’s anomaly). (ii) The towers of
Hanoi problem. Constraints require that the discs move between pegs without ever placing a larger disc on a smaller one. (iii)
Logistics domain: packages must be transported between locations. The airplanes are constrained to move between airports, while
the trucks are restricted to local regions. (iv) Depiction of rovers domain: differently equipped rovers rove around planet surface,
examining sites of interest and recording data from experiments. Data is communicated back to a lander and from there to earth.
Constraints limit data storage, fuel use and recharging, rover capabilities and so on.

Artificial Intelligence: Technology with a Future

15 UPGRADE Vol. III, No. 5, October 2002 © Novática

leads to performance that far outstripped that of contemporary
planning search strategies. The success of Graphplan led to the
development of a number of Graphplan re-implementations
and extensions [Koehler et al. 1997] [Long/Fox 1999] and
some of its contributions remain very important today
(although its planning performance has been surpassed).

Graphplan searches for a plan in two stages. The first stage is
the construction of a data structure, the plan graph, that effi-
ciently represents information about what the executive could
possibly achieve by executing actions from the initial state. The
second stage searches, backwards from the goals, for a sub-
structure within the plan graph that represents a subset of
actions that will actually achieve the goals. An important
preparatory step used by Graphplan, that has become a
common first step for many planning systems, is the grounding
of all the actions. This is the process in which all the descrip-
tions of parameterised actions are instantiated with all possible
values for the parameters selected from the objects in the
problem instance. Grounding for large problem instances can
be a memory intensive operation, but clever compact encodings
can allow tens of thousands and even hundreds of thousands of
action instances to be constructed and stored efficiently.

The important information that is captured within the plan
graph is the collection of propositions that could, individually,
be made true after application of increasing numbers of actions.
In addition, the graph shows which pairs of propositions are
mutually incompatible. That is, pairs of facts that cannot both
be made true in a reachable state of the world. This might be
because the facts are simply inconsistent (such as that a door is
both open and closed) or it might be because achieving both of
them requires execution of more actions than the graph current-
ly allows. As the graph is extended by adding the effects of
execution of more actions, these pairs of facts will become
compatible. Once all the facts that form the goal set for the
planning problem appear in the graph and are pairwise compat-
ible, the search phase commences.

Graphplan search uses several additional techniques to
improve efficiency, but is essentially an exhaustive backward
search from the goals, looking for achieving actions that have
compatible preconditions. The search is carried out depth-first,
but is limited by the number of actions that the graph data struc-
ture contains. If no plan is found, the graph is extended and a
new search commences. This process makes Graphplan
perform an iterated depth-first search for a plan. This search
strategy combines the usual benefits of depth-first search (low
overhead in memory consumption) with the important benefit
of a breadth-first search, which is that it will find the shortest
solution. A failing of this search strategy is that it repeatedly
explores the same set of choices as the depth bound increases.
This failing impacts on Graphplan performance, so that if a
plan cannot be found in the first few iterations of the search
then it is often the case that Graphplan will exceed its resource
bounds before finding a plan.

4.2. Heuristics Search Planning
Following the significant success of Graphplan, interest in

the planning problem was revitalised and other new ideas were

explored. A very influential direction was initiated by work of
McDermott in the planning system UNPOP [McDermott 1996]
and Geffner and Bonet in HSP [Bonet et al. 1997]. The idea
behind this work is to use a classic heuristic guided search. This
is the search strategy in which the choice between alternatives
is made by evaluating each alternative using a heuristic evalua-
tion function and then selecting the best valued option. There
are several ways in which the heuristic guidance can be
applied, such as the well-known A* search, hill-climbing
searches, best-first searches and so on [Russell/Norvig 1995].
Using heuristic search was not new in planning – many plan-
ners, such as UCPOP [Penberthy/Weld 1992], allow a heuristic
function to be used to guide the search. However, heuristic
search had not previously seemed very promising. The difficul-
ties that had been encountered by earlier planners attempting to
exploit heuristic choice arose from the fact that the heuristic
function was usually encoded by hand and it was often difficult
to construct a function that could reliably guide the planner to
make all the right choices.

The novel contribution made by McDermott and by Geffner
and Bonet was to demonstrate a method by which a surprising-
ly informative heuristic function could be constructed automat-
ically, simply by analysing the domain. Although the details of
the techniques differ, the underlying approach is the same: the
heuristic value of a particular choice of action is based on an
estimate of how much work remains to be accomplished
following the addition of that action to the plan. To estimate the
outstanding work a very simple, yet very effective, measure-
ment is made: the number of actions required to achieve all the
outstanding goals if the destructive effects of those actions are
ignored. Achieving goals using actions whose destructive
effects are ignored is called relaxed planning. The measure of
outstanding work is simply the size of a relaxed plan to achieve
the goals. Unfortunately, finding an optimal relaxed plan is,
perhaps surprisingly, technically as hard as finding a real plan
[Erol et al. 1995]. Fortunately, however, it is relatively easy to
find arbitrary relaxed plans, and even to find “good” relaxed
plans. The work inspired by McDermott and Geffner and
Bonet, then, uses efficient techniques to construct good relaxed
plans which are treated as reasonably accurate measures of the
work required to complete a plan if a given choice of action is
pursued.

One of the most efficient planners based on this approach is
the FF system developed by Hoffmann [Hoffmann/Nebel
2000]. This planner uses a relaxed plan graph (built using
actions with their destructive effects ignored) and an efficient
plan graph search to find good relaxed plans. Using this
approach yields a slightly different heuristic estimate from that
exploited in HSP, and the results seem slightly better. The heu-
ristic exploited by HSP is admissible (it never over-estimates
the distance to the goal) whilst the plan graph based heuristic
of FF is inadmissible because it relies on extraction of a relaxed
plan from the plan graph, and there is no guarantee that the plan
extracted will be the shortest one available. Geffner and Bonet
have explored a wide variety of variants on the relaxed plan
heuristic [Bonet/Geffner 1997]. Hoffmann has carried out a
thorough exploration of the way in which the optimal relaxed

Artificial Intelligence: Technology with a Future

© Novática UPGRADE Vol. III, No. 5, October 2002 16

plan relates to the optimal real plan in a variety of bench mark
domains, allowing the identification of several topological
features that govern the success or failure of the relaxed plan-
ning heuristic as a guide towards real plans.

4.3. Transformation of Planning Problems
A different direction has been explored by several research-

ers: the reformulation of a planning problem into a form that is
amenable to solution using a technology developed in a differ-
ent research field. There are at least three examples of this
approach: the SAT-planners, in which a planning problem is
converted into an instance of a SATISFIABILITY problem and
solved using an efficient SAT-solver [Kautz/Selman 1995]; the
CSP approach, in which a planning problem is reformulated as
a constraint satisfaction problem and solved using a CSP-
solver [vanBeek/Chen 1999] [Binh/Kambhampati 2000] and
the model-checking approach in which a planning problem is
converted into a large logical formula that can be model-
checked [Edelkamp/Helmert 2000] [Cimatti/Roveri 1999] (this
is actually a variation on the SAT-planning approach, but using
sufficiently distinct technology for checking the formula that it
is generally seen as a direction in its own right).

The SAT-solving approach has been explored most exten-
sively in the Blackbox system developed by Kautz and Selman
[Kautz/Selman 1995]. The approach exploits the expressive
power of the SATISFIABILITY problem. Briefly, this problem
can be summarised as that of attempting to determine whether
there is an assignment of truth values to propositional variables
appearing in a given propositional formula that will make the
formula true. The expressive power of propositional formulae
is such that it is possible to express the structure and constraints
of a planning problem. There is an interesting complication,
which is that a SAT-instance can only express the possibility of
their being a plan of a maximum given size. If the formula
cannot be satisfied then a new formula must be constructed
(usually by a straightforward extension of the existing formula)
to express the possibility of there being a longer plan. Thus, the
problem of finding a plan becomes not one instance of SATIS-
FIABILITY, but a sequence of instances as the search attempts
to find a plan with iteratively increasing numbers of actions.
The Blackbox system encompasses several different SAT-solv-
ing techniques, each configurable with different parameters
controlling their behaviour, but the underlying translation of a
planning problem into a SATISFIABILITY instance is via a
plangraph. Two extensions of SAT-planning have explored
extended expressive power that encompasses numeric valued
expressions: LPSAT combines a SAT-solver with a linear-
constraint solver to handle a restricted (but very powerful)
collection of numeric-valued expressions [Wolfman/Weld
1999] and constraints and a version in which an integer
programming solver is combined with a SAT-solver has also
been tried [Vossen et al. 1999]. Integer programming is a simi-
lar optimization of numeric valued expressions, subject to
constraints, to that tackled in linear programming (linear con-
straint satisfaction). The difference lies in the added constraint
that variables take integer values instead of real values – an
apparently minor addition, but one that has surprisingly far-

reaching consequences for the difficulty of the search for a
solution.

The CSP approach has been explored by van Beek
[vanBeek/Chen 1999], using hand-coded translations of plan-
ning problems for his CSP solver. More recently, Binh Do and
Kambhampati have shown [Binh/Kambhampati 2000] that
automatic translation to CSP is possible, using a Graphplan-
style plan graph as an intermediate structure. CSPs consist of
collections of variables, each with an associated domain of
possible values, and a collection of constraints that specify how
values of variables must interact. A solver searches for assign-
ments of values to the variables that are consistent with the
constraints. Described at this abstract level, it is not hard to see
how CSP and SATISFIABILITY can be closely related to one
another – the assignment of truth values to propositional varia-
bles is a restricted form of the assignment of domain values to
variables in a CSP. The CSP community has explored a variety
of techniques for efficient CSP solving [Tsang 1993] and it
might be hoped that these techniques have something to offer
to planning. There probably are many lessons that can be
learned within the planning community from the CSP commu-
nity, but it is now apparent that, as with other reformulation
techniques, the sacrifice of structure from the planning problem
is very hard to repay with performance benefits in the technol-
ogy that is made accessible for solving the newly expressed
problems.

The third approach, model-checking, was explored by sever-
al of the competitors in the competition in 2000
[Edelkamp/Helmert 2000] [Hölldobler/Störr 2000]. The idea in
this approach is to reformulate the planning problem as a logi-
cal formula that can be expressed as a binary decision diagram
– a particularly compact representation for manipulating such
formulae. Once again, the reformulation gives access to generic
technology for solving problems in the form of the reformulat-
ed problem. In this case, an efficient model-checking approach
can be used to determine the status of the formula. There
remains a very active application of the approach in the solu-
tion of planning problems that involve actions with uncertain
outcomes (see, for example, [Cimatti/Roveri 1999]).

4.4. Hybrid Planning
Experimental results demonstrate that there is no single plan-

ning strategy suited to all planning problems. All of the
approaches discussed above display a wide range of perform-
ance over different problems and the extent to which a particu-
lar strategy is suited to a particular problem is determined by
the structure and organization of the problem. For this reason
hybrid planning approaches can be very successful. However,
determining automatically which of the available strategies in
a hybrid to invoke remains a difficult research problem.

Edelkamp and Helmert’s MIPS system [Edelkamp/Helmert
2000] combined a Graphplan strategy with a model-checking
approach, using time bounds to determine which of the strate-
gies to apply to a problem. The Graphplan strategy was tried
first, and if no solution was found within the time bound the
problem would be reformulated as a model-checking problem.
Similarly, the BLACKBOX system [Kautz/Selman 1995] is

Artificial Intelligence: Technology with a Future

17 UPGRADE Vol. III, No. 5, October 2002 © Novática

able to invoke a range of different SAT-solving techniques and
these are tried successively until a solution is found (or
resource bounds are exceeded).

Sometimes no generic search strategy is suited to the solution
of a problem and, instead, some specialised solver should be
invoked. A direction that has been explored in some recent
work in planning [Fox/Long 2001] [Long/Fox 2000], is the
idea of harnessing specialised solvers capable of efficiently
tackling particular combinatorial problems, such as the well-
known Travelling Salesman Problem (TSP), to support a
general planning engine. The motivation for this is that many
hard specialised problems have themselves been the subject of
research and good solutions exist for them, while a generic
problem-solving technology is very unlikely to challenge these
specialised solutions when applied to these problems. It is often
the case that these specialised problems appear as sub-prob-
lems within a larger planning problem. For example, a problem
that involves transporting components between locations,
constructing complex artifacts with the components and then
delivering them to customers can be seen to contain route-
planning, resource allocation, job-shop scheduling and
construction planning sub-problems. Each of these can, to
some extent (although not entirely) be decoupled from the
others and solved using specialised technology.

Several examples have now been demonstrated in which a
successful automatic identification of sub-problems is
combined with automatic configuration of specialised prob-
lem-solving technology and solution of planning problems
using these specialised solvers [Long/Fox 2001] [Clark 2001]
[Long et al. 2000] [Long/Fox 2002]. Another planner exploit-
ing a similar architecture, although without automatic problem
decomposition, is REALPLAN [Srivastava 2000], which
factors out resource-scheduling sub-problems for specialised
treatment. The decomposition approach is of interest because it
offers a way in which advances in particular problem-solving
technologies might be exploited without impacting on the task
of encoding the planning problem – automatic identification of
sub-problems relieves the domain-engineer of the requirement
to understand the characteristics of the sub-problems and also
of the obligation to understand the restrictions on the capabili-
ties of the sub-solvers or of the ways in which collections of
solvers might interact in deployment.

4.5. Planners Exploiting Hand-Coded Control Knowledge
Although the development of fully-automated planning

systems, which do not rely on advice from human domain-
experts to guide their search, has been the focus of most of the
survey so far, progress in planners exploiting hand-coded
control knowledge has been equally dramatic in the past few
years. The third IPC highlighted the performance of three such
systems: TALplanner [Kvarnstrom/Doherty 2000], TLplan
[Bacchus/Kabanza 2000] and SHOP2 [Nau et al. 1999]. The
first two of these share significant common ground in their
planning strategy, which is essentially a forward search, explor-
ing the states that can be reached by the execution of actions
from each state as it is visited, and selecting the next state to
visit using carefully crafted advice provided by a human

domain-engineer. The third system represents a class of plan-
ners known as hierarchical task network (HTN) planners. In
these systems the domain must be described in terms of hierar-
chically structured actions, from an abstract level down to a
concrete level of detail. An abstract action connects to one or
more methods, which are possible “recipes” for accomplishing
the abstract task using less abstract tasks. The planner uses a
process of refinement to construct a plan, replacing abstract
actions that achieve its initial goals with their less abstract
method expansions and then, iteratively, refining the compo-
nents of these expansions. We will now consider each of these
two families of planners in a little more detail.

4.6. Hand-Coded Control Rules
TLplan and TALplanner both rely on control rules which

guide the choices made by the planner as it considers which
action to select at each step in the plan construction. Both of
these systems use a temporal logic to express the rules, which
allows the control rules to explicitly refer to logical relation-
ships between properties of the states before and after applica-
tion of an action, to the goal state, the initial state and also to
collections of states such as all future states or all past states.
Control rules can express advice such as “do not load an object
onto a transporter if it is already at the place it needs to reach”,
or “if an unloaded object and a transporter are at the same place
and the object needs to go somewhere that the transporter is
scheduled to visit, then in the next state the transporter must
still be at the same location and the object must either be loaded
into the transporter or still waiting to be loaded”. It can be seen
from these examples that control rules can become quite cum-
bersome to write, even if they express relatively intuitive
advice. In particular, the second of these examples is only valid
if there is a single suitable transporter. If there is more than one
transporter that could be used to transport the object then the
rule becomes even more cumbersome to express. Some
research has been conducted on automatically constructing
rules in certain cases [Kvarnstrom et al. 2000] [Muñoz-Avila
2002], but the encoding of a good set of advice for a domain
remains a demanding task.

One of the most significant disadvantages of planners using
hand-coded control knowledge is that the task of writing
requires expertise in both the domain and knowledge of the
way that the planner will respond to the advice. Constructing
collections of advice that are both consistent and allow a plan-
ner to find all plans that are sought is a complex task, not unlike
programming. The benefits are considerable, however: TLplan
and TALplanner produced plans of a consistently high quality,
very fast, for a huge range of problems presented to it in the
third IPC. TLplan can plan with durative actions, exploiting
concurrency, and with numbers. TLplan is regularly used by
graduate students, who have constructed representations of a
wide variety of problem domains and achieved successful plan-
ning performance with the system, demonstrating that domain
construction is not a skill restricted to a small elite. Neverthe-
less, the burden of modelling domains for TLplan has not been
properly explored and it is interesting to observe that Bacchus

Artificial Intelligence: Technology with a Future

© Novática UPGRADE Vol. III, No. 5, October 2002 18

and Ady were unable to complete an encoding of the final
domain for the third IPC due to time constraints.

4.7. HTN Planning
HTN planning has been an active area of research for more

than a decade, with influential systems including Tate’s O-Plan
system [Currie/Tate 1991] [Drabble/Tate 1994] and Wilkin’s
SIPE [Wilkins 1988]. SHOP2 [Nau et al. 1999] [Nau et al.
2001] represents a particularly straightforward implementation
of an HTN system. In contrast to the approach adopted in the
planners that use hand-coded control rules, HTN planners
cannot rely on the primitive actions available in the domain,
alone, but must have these supplemented with constructions –
abstract actions – that represent sequences of these primitives.
The use of a hierarchy of abstractions allows alternative choic-
es about the precise sequence of primitive actions that is used
to realise a given abstract action, by offering different expan-
sions for abstract tasks. Thus, the search problem confronted by
HTN planners is not the typical search between alternative
primitive actions that is managed by other planners, but a
choice between the particular refinements used to realise
abstract tasks.

HTN planning is a confounding mixture: on the one hand it
is highly intuitive to exploit abstraction in planning, simplify-
ing a planning problem by identifying strategic structures to
solutions before attempting to refine them into detailed activity.
On the other hand, it is a common criticism of HTN systems
that it seems that most of the planning problem is solved by the
human domain engineer and that the “planner” is relegated to a
purely administrative role of coordinating the recovery of plan
components from a database. This is a simplistic view –
domain constructions for SHOP are demanding to construct,
requiring knowledge of both the planner and the domain, but
nevertheless, the domain encodings represent specialised
programs and the planner is certainly required to execute more
complex activity than pure database look-up.

What is frustrating to many researchers is that the intuitive
appeal of abstraction as a route to efficient planning seems to
be submerged under a significant amount of problem-specific
specialised techniques, some of which are not at all intuitive
and do not fit easily into the HTN machinery. For example,
managing the order in which goals are considered is an impor-
tant element of the efficient heuristic control of all planners,
including HTN planners. The mechanism by which this is
handled in SHOP is by defined artificial extensions to the pure-
ly physical elements of the original problem that encode goal
agenda management actions and the organisation of the agenda
is handled by use of these problem-specific actions.

The exploitation of abstraction remains a controversial and
tantalising theme in planning research: it seems very reasona-
ble that some form of abstraction should help to make planning
more efficient, but there remains work to be done to identify
mechanisms for doing so that are flexible and convenient to
exploit while realising their promise of efficiency gains.

Modern Planning Systems
In this section we will review some of the modern planning

approaches that currently seem particularly promising and that
exhibit particularly interesting features. The enriched expres-
sive power of PDDL2.1 [Fox/Long 2002], used in the 2002
planning competition (the third IPC), makes the range of prob-
lems that can be modelled far more interesting and far closer to
real applications than previously. Some of the recently emerg-
ing planning approaches are capable of handling problems
requiring at least the expressive power of PDDL2.1.

A search strategy that has recently entered the planning
repertoire is local search. The planner PbR [Ambite/Knoblock
1997] was one of the first planners to demonstrate that plans
could be obtained by means of iterative repair performed on a
flawed initial plan, using rewriting rules selected by efficient
local search techniques. ASPEN [Chien et al. 1999] [Rabideau
et al. 1999] also constructs plans by means of local search-
based iterative repair. This idea is explored in LPG [Gerevi-
ni/Serina 2002] using locally extending plan graphs. LPG does
not handle arbitrary use of numbers, but manages actions with
duration and concurrency. LPG replaces the Graphplan search
with a far more efficient and more powerful local search
technique. This involves identifying an initial candidate “plan”
(which might, in fact, not even be executable) and refining it by
generating alternative possible repairs or modifications to the
candidate. Evaluation of alternative refinements is carried out
by a heuristic evaluation function that is partially based on the
relaxed plan heuristics used in HSP and FF. LPG demonstrates
that there is significant potential in this technique coupled with
techniques capable of exploiting the reachability structure of
planning problems.

Heuristic search planning remains a powerful strategy. An
extended version of FF, metric-FF [Hoffmann 2002], can
handle numeric expressions and typically generates good qual-
ity solutions while maintaining its speed. The extension of the
heuristic evaluation function to handle numbers essentially
involves estimating how actions can contribute towards moving
a number-valued expression towards its target threshold value.
In the same way that the destructive propositional effects of
actions are ignored in generating the relaxed plan heuristic
estimates of distances to goals, so in the metric version of FF
the “destructive” effects of actions that move numeric values in
the “wrong” direction are ignored in making the heuristic esti-
mates of numbers of actions required to complete a plan. This
approach relies on numeric expressions being linear forms.
Although it performs extremely well in many bench mark prob-
lems it does not perform well in problems in which the numeric
expressions represent complex interlocked resource manage-
ment behaviour and it seems likely that the relaxation of prop-
ositional parts of a plan is more widely applicable than the
relaxation of the numeric parts. FF does not handle actions with
duration and its current architecture does not obviously gener-
alise to support construction of plans with concurrency.

An interesting system, which extends the notion of forward
search to planning in temporal and resource intensive domains,
is SAPA [Binh/Kambhampati 2001]. SAPA uses a heuristic
evaluation function based on a relaxed temporal plan, together

5

Artificial Intelligence: Technology with a Future

19 UPGRADE Vol. III, No. 5, October 2002 © Novática

with a technique for estimating the implied cost associated with
supplying necessary resources for the relaxed plan. The
language SAPA uses allows the representation of actions with
duration, the effects of which can happen at arbitrary points
within the durative interval. The current implementation of
SAPA allows effects to be associated only with the end points
of these intervals, because computing interactions between
arbitrary time points is computationally expensive and compli-
cates the reasoning mechanisms of the planner.

Most of the fully automatic planning systems that have been
developed in the past five years rely on grounding of actions.
As previously mentioned, although this might seem excessive-
ly memory-intensive, in practice, using compression tech-
niques, it has proved possible to manage large numbers of
actions. However, there is clearly a question about the scalabil-
ity of this technique in the face of problems with large numbers
of objects. Although such problems might not seem likely to
arise in practice, in fact, where a domain requires ranges of
numbers as objects there can be very large collections of
objects in a problem instance. One planner in the third IPC,
VHPOP [Younes/Simmons 2002], demonstrated an interesting
approach to compromising between grounding, and the poten-
tial for efficiency it offers, and leaving parameters unbound,
which offers the benefits of far more compact representation.

Bridging the Gap between Research and Application
Planning technology has been applied to a wide variety of

problems. For example manufacturing processes [Nau et al.
1995] [Gupta 1998], satellite and spacecraft operations plan-
ning [Muscettola 1994] [Muscettola et al. 1998] [Smith et al.
1999], bridge play [Smith et al. 1998], chemical plant start-up
planning [Aylett et al. 1998], elevator scheduling [Koehler
1998], evacuation planning [Muñoz-Avila et al. 2001] repre-
sent only some of problems to which planning has been
successfully applied. However, applied
planning systems are knowledge-intensive
systems, requiring significant technical in-
put from both domain-experts and, perhaps
primarily, from planning experts. To make
planning a more accessible and widely used
technology, domain-independent systems
offer a route past the bottleneck of planning
system expertise. In this section we consid-
er the extent to which domain-independent
planning technology is reaching a maturity
sufficient for broader and realistic applica-
tion.

Simplifying assumptions of classical
planning, described in section 3, have been
progressively relaxed in modern systems.
One of the stated goals of the third IPC was
the encouragement of a broader commit-
ment to more sophisticated planning capa-
bilities. The development of a much richer
expressive power for logical preconditions
than pure STRIPS was considered from
relatively early days [Pednault 1989] and

achieved in least-commitment planners [Blum/Furs 1995], as
well as more recent systems such as the Graphplan-based IPP
[Koehler et al. 1997] and heuristic-forward-search planner FF.
Preprocessing of domain encodings has proved a powerful and
successful approach to managing this form of extended expres-
siveness. This power was tested in a range of systems in the first
and, particularly, the second IPCs. In the second IPC, a domain
based on the scheduling of elevator use (Miconics-10 [Koehler
1998]) exercised a wide range of the expressive power of this
fragment of PDDL.

In the most recent competition, the expressive power of
PDDL has been extended with the explicit intention of breach-
ing some of the traditional restrictions of classical planning. In
particular, domains used in the third IPC make use of numeri-
cally measured resources and other numeric values. They also
model the temporal structure of actions in the domains,
including the duration of actions that can be executed. The
inclusion of actions with duration implicitly introduces the
need for planners that can manage and exploit concurrency,
including recognising harmful interactions between concurrent
activities even if they simply overlap, rather than synchronise
their start or end points. Furthermore, plan-metrics have been
added to the language, so that it is possible to identify how
plans should be evaluated. The impact of this extension should
not be underestimated: it offers the power to harness planning
for practical use in a way that is simply impossible if the only
measure of plan quality is the number of steps in the plan. In
almost every real planning application the cost of resource
consumption, including the actual time over which the plan is
executed, possibly offset by the profit generated by the plan, is
an essential measure of plan quality, while number of steps is
of limited interest.

These extensions in expressive power made it possible to
introduce several domains in the third IPC that make an inter-

6

Figure 5: Complex Satellite variant, plan quality: smaller values are better plans.

Artificial Intelligence: Technology with a Future

© Novática UPGRADE Vol. III, No. 5, October 2002 20

esting and convincing step towards real application domains.
One domain extends the logistics domain by the addition of
time for travel between locations, time for loading and unload-
ing and fuel consumption. With these additions, plan quality
can be measured as a tradeoff between the total time required
to complete all the deliveries and the fuel consumed in doing
so. The extended domain also includes alternative means of
travel, offering a choice between slow, fuel-efficient travel and
faster, fuel-hungry travel. This choice is an important one when
the plan is to be evaluated using combined costs of duration and
fuel consumption.

A second realistic domain is that of planetary
exploratory-rovers, based on the Mars exploratory
rovers mission due for 2003 launch. In the compe-
tition model of this domain rovers are equipped
with different equipment and have different capa-
bilities for traversal of the terrain. The rovers must
collect data and downlink it to a lander (for subse-
quent retransmission to earth). Terrain blocks
communication between certain locations, making
it necessary to plan how to efficiently visit experi-
ment sites, store data and communicate it after
moving to a site from which transmission to the
lander is possible. Rovers consume energy during
their activities and must recharge to remain active.
Plan costs are measured in terms of the time and
energy spent acquiring the data, making efficient
concurrent use of rovers important for plan quality.

A third domain introduced is modelled after the
problem of satellite observation scheduling [Smith
et al. 2000]. This problem involves using a collec-
tion of differently equipped satellites to record
observations, storing the data in a finite capacity
on-board store for subsequent downlink. Careful
choice of calibration targets to be used in setting

up instruments is an important aspect of this prob-
lem, as well as efficient management of the data
store and of fuel in slewing the satellite between
observation and calibration targets. One version of
this domain used in the competition required plan-
ners to solve the problem of maximising acquired
data, without being presented with any logical
goals at all. This is a dramatic contrast to the clas-
sical planning problem formulation and demon-
strates one of the ways in which plan metrics
stretch the scope of the planning problem.

Although there remain aspects of the real prob-
lems on which these domains are modelled that are
not yet captured, or are even impossible to capture
within the PDDL language as it currently stands,
the performance of planners on these problems and
the sophistication of the models demonstrates the
distance that planning has progressed in recent
years. Some of the outstanding issues are discussed
in section 7. We end this section by considering
data demonstrating the performance of planners in
the third IPC on some of the problems in various

versions of the satellite domain.
Figure 5 shows plans produced for a variant of the satellite

domain using both numeric and temporal features. Here the ob-
jective was to minimize the time for execution of the plan.
Figure 6 shows how fast these plans were produced (on a
1800MHz Athlon CPU PC, with 1Gb RAM), while Figure 7
shows that these plans contain well over 100 steps in some
cases. Note that the planners using hand-coded controls
produced longer plans, reflecting the exploitation, by the
domain-engineers, of certain sequences of actions that do not
obey a “triangle inequality”: for some actions A, B and C,

Figure 6: Complex Satellite variant, planning speed: note log-scale.

Figure 7: Complex Satellite variant, plan length. This plot shows the size of
the plans produced, placing the planning times in context. Note that the
fully-automated planners typically produce plans with fewer steps.

Artificial Intelligence: Technology with a Future

21 UPGRADE Vol. III, No. 5, October 2002 © Novática

actions A and B achieve a goal that is otherwise achieved by
action C, but the sum of the lengths of actions A and B is small-
er than the length of action C. The automatic planners tend to
favour selecting single action solutions to goals when they can,
even though this is not always optimal.

Issues for Further Research
As we have seen, planning has moved on a long way from

its STRIPS roots. Planners can now handle problems with time
and numbers, allowing the expression of complex mixed
scheduling and planning problems, demanding concurrency
and resource management. In addition, the modelling language
allows expression of plan metrics, so that planners can seek to
optimise the plans they produce against a more useful measure
of value than simple plan length. In the 2002 planning compe-
tition the use of this metric confirmed that several planners can
tailor their performance towards production of plans of higher
quality. Using the plan metric it is even possible to construct
planning problems in which the objective is not to achieve any
particular logical goal state, but to optimise the value of some
measure of utility subject to the selection of actions forming the
plan. For example, in the competition a problem was posed in
which satellite observations should be collected into finite
capacity stores on board satellites. No specific observation
targets were required to be stored, but the value of the plan was
determined by the total amount of stored data achieved by the
plan. This kind of problem represents a radical new challenge
for the planning community. MIPS [Edelkamp 2002] was the
only fully automated planner that managed to produce plans
that acquired data. The hand-coded systems, TLplan and
SHOP2, both produced very high-quality plans, apparently
close to optimal in the majority of problems; but this perform-
ance relied on a human expert encoding the problem so that
numeric rather than logical effects would be prioritized in the
search process. The use of plan metrics is clearly an important
challenge for the further development of fully automated
planning systems, perhaps being used to supplement the guid-
ance heuristic evaluation functions used by heuristic search
planners.

The existing PDDL standards do not support the modelling
of exogenous events. As discussed earlier, classical planning
makes the assumption that no change can occur that is not
under the direct control of the planner. However, in many real-
istic situations it is necessary to plan around the fact that uncon-
trollable changes will occur. For example, in the full satellite
observation planning problem, it is vital to represent the fact
that opportunities for making observations and for downlinking
data both arise in time windows that are not under the control
of the executive (and, therefore, cannot be planned by the
planner), since they arise as a consequence of the process of
orbiting the earth and the events of transition above or below
the horizon for each opportunity location that are caused by this
process. Some planners in the application-oriented tradition
[Muscettola 1994] [Laborie/Ghallab 1995] are capable of plan-
ning with foreknowledge of such events. When such events can
be anticipated they can be encoded as constraints which can be
thrown in with all the other constraints that describe a problem

and then any solution that emerges will respect the restrictions
that they impose. However, planning strategies not based on
reformulation of the problem into a CSP have not yet success-
fully tackled planning with predictable exogenous events.

When exogenous events are not entirely predictable they give
rise to uncertainty in the planning problem. Although many
researchers have considered the problem of planning under
uncertainty in various forms, there remain many questions to
resolve. There is not yet a clear consensus even on the form of
a plan when managing uncertainty. It seems that uncertainty
arises in several different forms. Unpredictable exogenous
events give rise to a form which can be difficult to plan with –
if unexpected changes are occurring frequently the resulting
uncertainty can undermine any planning effort. More benign
forms of uncertainty also exist. For example, there is uncertain-
ty about the precise duration of actions, or consumption of
resources such as fuel by those actions. This uncertainty typi-
cally can be described by continuous probability distributions,
often normal or close to normal. This form of uncertainty might
be considered benign in that plans can be made increasingly
robust to the uncertainty by allowing more resources for their
execution. Uncertainty about the successful outcome of the
execution of an action might be best described by a discrete
probability distribution. This form of uncertainty is more diffi-
cult to manage because it leads to a significant branching in the
possible states of the world after execution, making it very hard
to produce a robust plan without introducing contingent
actions.

In addition to uncertainty, many real domains demand that a
planner should manage complete ignorance. In this case, the
executive will typically have access to some form of informa-
tion gathering actions and the planner can plan to acquire infor-
mation and react to the results. In this situation, and also in the
case of handling uncertainty, it is often the case that to plan for
long sequences of activity is either impossible or else a poor
investment of effort. A more useful approach to problem solv-
ing in this case is to interleave planning and execution, using
execution-monitoring, failure diagnosis and plan repair tech-
niques to resolve the problems that arise during this process.
Continuous planning [Knight et al. 2001], in which new goals
can arise as a consequence of discoveries made at execution
time, is an important development of planning taking it further
in the direction of providing the basis for autonomous behav-
iour. These are all areas of active research, but there is no
commonly accepted empirical framework for evaluating such
systems, or even for describing problems that could be shared
across the community. Putting problems such as these onto the
agenda for the whole planning community is an important role
that can be played by combinations of the competition series,
the reporting of high-profile application areas demanding these
kinds of functionality and the continual striving of the commu-
nity as a whole to extend and develop the technology at its core.

Conclusion
Planning is a hard problem, even when reduced to the bare

form of the classical planning formulation. The hardness of this
problem has confounded rapid development in the planning

7

8

Artificial Intelligence: Technology with a Future

© Novática UPGRADE Vol. III, No. 5, October 2002 22

research community for a long time, but over recent years the
field has seen significant advances. This progress has allowed
the restrictions of classical planning to be relaxed or overcome.
In turn, this has brought extended expressive power and
domain-independent planning is now a technology capable of
application to realistic domains.

Over the past decade several new techniques have emerged
as promising for future development of classical planning
towards application. In particular, these include heuristic
forward search based on informative heuristics that can be
automatically generated and that exploit the structure of the
problem; local search techniques that can be applied to effi-
ciently repair a rapidly generated, flawed plan; hybrid systems
that exploit structure and systems that go beyond the simple
notion of batch planning and can anticipate execution-time
discoveries. In parallel there has been increasing interest in
planners that can reason about expert knowledge of a problem,
expressed in terms of search control rules or in terms of skeletal
plan structure or HTN-style action decompositions. The gap
between classical planning and application-oriented planning
is narrowing and the scope for exploitation of planning technol-
ogy in industry, commerce and scientific application contexts is
continuously increasing.

References
[Ambite/Knoblock 1997]

J.L. Ambite and C.A. Knoblock. Planning by rewriting: efficient-
ly generating high-quality plans. In Proceedings of 14th National
Conference on AI (AAAI), 1997.

[Aylett et al. 1998]
R. Aylett, J. Soutter, G. Petley, P.W.H. Chung, and A. Rushton. AI
planning in a chemical plant domain. In Proceedings of European
Conference on AI ECAI 98, 1998.

[Bacchus 2000]
F. Bacchus. The 2nd International Planning Competition home
page. <http://www.cs.toronto.edu/aips2000/>, 2000.

[Bacchus/Kabanza 2000]
F. Bacchus and F. Kabanza. Using temporal logic to express
search control knowledge for planning. Artificial Intelligence,
116(1–2):123–191, 2000.

[Binh/Kambhampati 2000]
M. Binh Do and S. Kambhampati. Solving planning graph by
compiling it into a CSP. In Proc. of 5th Conference on AI Plan-
ning Systems, pages 82–91. AAAI Press, 2000.

[Binh/Kambhampati 2001]
M. Binh Do and S. Kambhampati. Sapa: a domain-independent
heuristic metric temporal planner. In Proc. ECP-01, 2001.

[Blum/Furs 1995]
A. Blum and M. Furst. Fast Planning through Plan-graph Analy-
sis. In Proc. of 14th Internation Joint Conference on AI, pages
1636–1642. Morgan Kaufmann, 1995.

[Bonet/Geffner 1997]
B. Bonet and H. Geffner. Planning as heuristic search: new
results. In Proc. of 4th European Conference on Planning (ECP).
Springer-Verlag, 1997.

[Bonet et al. 1997]
B. Bonet, G. Loerincs, and H. Geffner. A robust and fast action
selection mechanism for planning. In Proc. of 14th National
Conference on AI, pages 714–719. AAAI/MIT Press, 1997.

[Borrett/Tsang 2001]
J. Borrett and E.P.K. Tsang. A context for constraint satisfaction
problems formulation selection. Constraints, 6, No.4:299–327,
2001.

[Chien et al. 1999]
S. Chien, R. Knight, A. Stechert, R. Sherwood, and G. Rabideau.
Integrated planning and execution for autonomous spacecraft. In
Proceedings of the IEEE Aerospace Conference (IAC), 1999.

[Cimatti/Roveri 1999]
A. Cimatti and M. Roveri. Conformant planning via model
checking. In Proceedings of the European Conference on Plan-
ning (ECP99), 1999.

[Clark 2001]
M. Clark. Construction domains: a generic type solved. In Proc.
of 20th UK Planning and Scheduling Workshop, Edinburgh,
2001.

[Currie/Tate 1991]
K. Currie and A. Tate. O-plan: the open planning architecture.
Artificial Intelligence, 52(1):49–86, 1991.

[Drabble/Tate 1994]
B. Drabble and A. Tate. The use of optimistic and pessimistic
resource profiles to inform search in an activity based planner. In
Proc. of 2nd Conference on AI Planning Systems (AIPS). AAAI
Press, 1994.

[Edelkamp 2002]
S. Edelkamp. Mixed propositional and numeric planning in the
model checking integrated planning system. In M. Fox and A.
Coddington, editors, Planning for Temporal Domains: AIPS’02
Workshop, 2002.

[Edelkamp/Helmert 2000]
S. Edelkamp and M. Helmert. On the implementation of mips. In
Proceedings of Workshop on Decision-Theoretic Planning, Arti-
ficial Intelligence Planning and Scheduling (AIPS), pages 18–25.
AAAI-Press, 2000.

[Erol et al. 1995]
K. Erol, D. Nau, and V.S. Subrahmanian. Complexity, decidabil-
ity and undecidability results for domain-independent planning.
Artificial Intelligence, 76(1–2):75–88, 1995.

[Fikes/Nilsson 1971]
R.E. Fikes and N.J. Nilsson. STRIPS: A New Approach to the
Application of Theorem-Proving to Problem-Solving. Artificial
Intelligence, 2(3):189–208, 1971.

[Fox/Long 1998]
M. Fox and D. Long. The automatic inference of state invariants
in TIM. Journal of AI Research, 9:367–421, 1998.

[Fox/Long 2000]
M. Fox and D. Long. Utilizing automatically inferred invariants
in graph construction and search. In Proc. of 5th Conference on
Artificial Intelligence Planning Systems (AIPS), Breckenridge,
Colorado. AAAI Press, 2000.

[Fox/Long 2001]
M. Fox and D. Long. Hybrid STAN: Identifying and Managing
Combinatorial Sub-problems in Planning. In Proc. of 17th Inter-
national Joint Conference on AI, pages 445–452. Morgan
Kaufmann, 2001.

[Fox/Long 2002]
M. Fox and D. Long. PDDL2.1: An extension to PDDL for ex-
pressing temporal planning domains. Technical Report Depart-
ment of Computer Science, 20/02, Durham University, UK.
Available at: <http://www.dur.ac.uk/d.p.long/competition.html>.
Forthcoming in revised form as a JAIR article, 2002.

[Gerevini/Schubert 1998]
A. Gerevini and L. Schubert. Inferring state constraints for
domain-independent planning. In Proc. of 16th National Confer-
ence on AI, pages 905–912. AAAI/MIT Press, 1998.

[Gerevini/Serina 2002]
A. Gerevini and I. Serina. LPG: A planner based on local search
for planning graphs. In Proc. of 6th International Conference on
AI Planning Systems (AIPS’02). AAAI Press, 2002.

[Green 1969]
C. Green. Theorem proving by resolution as a basis for question-
answering systems. In B. Meltezer, D. Michie, and M. Swann,

Artificial Intelligence: Technology with a Future

23 UPGRADE Vol. III, No. 5, October 2002 © Novática

editors, Machine Intelligence, volume 4. Edinburgh University
Press, 1969.

[Gupta 1998]
S.K. Gupta, D.S. Nau, and W.C. Regli. IMACS: A case study in
real-world planning. IEEE Expert and Intelligent Systems,
13(3):49–60, 1998.

[Hoffmann 2002]
J. Hoffmann. Extending FF to numerical state variables. In
Proceedings of European Conference on AI (ECAI’02), pages
571–575, 2002.

[Hoffmann/Nebel 2000]
J. Hoffmann and B. Nebel. The FF planning system: Fast plan
generation through heuristic search. Journal of AI Research,
14:253–302, 2000.

[Hölldobler/Störr 2000]
S. Hölldobler and H-P. Störr. Solving the entailment problem in
the fluent calculus using binary decision diagrams. In Workshop
on Model-Theoretic Approaches to Planning at AIPS2000. Beck-
enridge, 2000.

[Ingham et al. 2001]
M. Ingham, R. Ragno, and B.C. Williams. A reactive model-
based programming language for robotic space explorers. In Int.
Symp. on Artificial Intelligence, Robotics and Automation in
Space, 2001.

[Kautz/Selman 1995]
H. Kautz and B. Selman. Unifying SAT-based and graph-based
planning. In Proc. of 14th Internation Joint Conference on AI,
pages 318–325. Morgan Kaufmann, 1995.

[Kautz/Selman 1998]
H. Kautz and B. Selman. The role of domain-specific axioms in
the planning as satisfiability framework. In Proc. of 4th Confer-
ence on AI Planning Systems, Pittsburgh, PA, pages 181–189.
AAAI Press, 1998.

[Knight et al. 2001]
R. Knight, G. Rabideau, S. Chien, B. Engelhardt, and R. Sher-
wood. Casper: Space exploration through continuous planning.
IEEE: Intelligent Systems, 16(5):70–75, 2001.

[Koehler 1998]
J. Koehler. Planning under resource constraints. In Proc. of 13th
European Conference on AI, pages 489–493, 1998.

[Koehler et al. 1997]
J. Koehler, B. Nebel, J. Hoffmann, and Y. Dimopoulos. Extending
planning graphs to an ADL subset. In Proc. of 4th European
Conference on Planning, Toulouse, pages 273–285, 1997.

[Kvarnstrom/Doherty 2000]
J. Kvarnstrom and P. Doherty. TALplanner: A temporal logic
based forward chaining planner. Annals of Mathematics and
Artificial Intelligence, 30(1–4):119–169, 2000.

[Kvarnstrom et al. 2000]
J. Kvarnströn, P. Doherty, and P. Hasslum. Extending TAL-
planner with concurrency and resources. In Proceedings ECAI-
00, Berlin, Germany, August, 2000.

[Laborie/Ghallab 1995]
P. Laborie and M. Ghallab. Planning with sharable resource
constraints. In Proc. of 14th International Joint Conference on AI.
Morgan Kaufmann, 1995.

[Long/Fox 1999]
D. Long and M. Fox. The efficient implementation of the plan-
graph in STAN. Journal of AI Research, 10, 1999.

[Long/Fox 2000]
D. Long and M. Fox. Automatic synthesis and use of generic
types in planning. In Proc. of 5th Conference on Artificial Intelli-
gence Planning Systems (AIPS), pages 196–205. AAAI Press,
2000.

[Long/Fox 2001]
D. Long and M. Fox. Multi-processor scheduling problems in
planning. In Proc. of International Conference on AI (IC-AI), Las
Vegas, 2001.

[Long/Fox 2002]
D. Long and M. Fox. Reformulation in planning. In Proceedings
of Symposium on Abstraction, Reformulation and Approxima-
tion. LNAI, Springer-Verlag, 2002.

[Long et al. 2000]
D. Long, M. Fox, L. Sebastia, and A. Coddington. An examina-
tion of resources in planning. In Proc. of 19th UK Planning and
Scheduling Workshop, Milton Keynes, 2000.

[McCarthy/Hayes 1969]
J. McCarthy and P.J. Hayes. Some philosophical problems from
the standpoint of artificial intelligence. In B. Meltzer and D.
Michie, editors, Machine Intelligence 4, pages 463–502. Edin-
burgh University Press, 1969. reprinted in McC90.

[McDermott 1998]
D. McDermott. PDDL – the planning domain definition lan-
guage. Technical report, Yale University,
<http://www.cs.yale.edu/users/mcdermott.html>, 1998.

[McDermott 1996]
Drew McDermott. A heuristic estimator for means ends analysis
in planning. In B. Drabble, editor, Proceedings of the 3rd Interna-
tional Conference on Artificial Intelligence Planning Systems
(AIPS-96), pages 142–149. AAAI Press, 1996.

[Muñoz-Avila et al. 2001]
H. Muñoz-Avila, D.W. Aha, D.S. Nau, R. Weber, L. Breslow, and
F. Yaman. SiN: Integrating case-based reasoning with task
decomposition. In Proceedings of International Joint Conference
on AI (IJCAI-2001), 2001.

[Muñoz-Avila 2002]
L. Murray. Reuse of control knowledge in planning domains. In
L. McCluskey, editor, Knowledge Engineering Tools and
Techniques for AI Planning: AIPS’02 Workshop, 2002.

[Muscettola 1994]
N. Muscettola. HSTS: Integrating planning and scheduling. In M.
Zweben and M.S. Fox, editors, Intelligent Scheduling, pages
169–212. Morgan Kaufmann, San Mateo, CA, 1994.

[Muscettola et al. 1998]
N. Muscettola, P. Pandurang Nayak, B. Pell, and B.C. Williams.
Remote agent: To boldly go where no AI system has gone before.
Artificial Intelligence, 103(1–2):5–47, 1998.

[Nau et al. 1999]
D. Nau, Y. Cao, A. Lotem, and H. Muñoz-Avila. SHOP: Simple
hierarchical ordered planner. In Proc. of 16th International Joint
Conference on AI, pages 968–975. Morgan Kaufmann, 1999.

[Nau et al. 1995]
D. Nau, S. Gupta, and W. Regli. Artificial intelligence planning
versus manufacturing-operation planning: a case study. In Proc.
of 14th International Joint Conference on AI, pages 1670–1676.
Morgan Kaufmann, 1995.

[Nau et al. 2001]
D. Nau, H. Muñoz-Avila, Y. Cao, A. Lotem, and S. Mitchell.
Total-order planning with partially ordered subtasks. In Proceed-
ings of International Joint Conference on AI (IJCAI-2001), 2001.

[Newell/Simon 1963]
A. Newell and H. Simon. GPS, a program that simulates human
thought. In E.A. Feigenbaum and J. Feldman, editors, Computers
and Thought. McGraw Hill, NY, 1963.

[Pednault 1989]
E. Pednault. ADL: Exploring the middle ground between
STRIPS and the situation calculus. In Proc. of 1st International
Conference on Principles of Knowledge Representation and
Reasoning, pages 324–332. San Francisco, CA, Morgan
Kaufmann, 1989.

[Penberthy/Weld 1992]
J. Penberthy and D.S. Weld. UCPOP: a sound, complete, partial-
order planner for ADL. In Proc. Int. Conf. On Principles of
Knowledge Representation and Reasoning, pages 103–114, Los
Altos, CA, 1992. Kaufmann.

Artificial Intelligence: Technology with a Future

© Novática UPGRADE Vol. III, No. 5, October 2002 24

[Porteous 2001]
J. Porteous, L. Sebastia, and J. Hoffmann. On the extraction,
ordering, and usage of landmarks in planning. In Proceedings of
European Conference on Planning ECP’01, 2001.

[Rabideau et al. 1999]
G. Rabideau, R. Knight, S. Chien, A. Fukunaga, and A. Govind-
jee. Iterative repair planning for spacecraft operations in the
ASPEN system. In International Symposium on Artificial Intelli-
gence Robotics and Automation in Space (ISAIRAS), 1999.

[Russell/Norvig 1995]
S. Russell and P. Norvig. Artificial Intelligence: a Modern
Approach. Prentice Hall, 1995.

[Smith et al. 1999]
B. Smith, W. Millar, J. Dunphy, Y. wen, P. Nayak, E. Jr, and M.
Clark. Validation and verification of the remote agent for space-
craft autonomy. In Proceedings of the IEEE Aerospace Confer-
ence, Snowmass, CO., 1999.

[Smith et al. 2000]
D.E. Smith, J. Frank, and A.K. Jónsson. Bridging the gap
between planning and scheduling. Knowledge Engineering
Review, 15(1), 2000.

[Smith et al. 1998]
S.J.J. Smith, D.S. Nau, and T. Throop. Computer bridge: A big
win for AI planning. AI Magazine, 19(2):93–105, 1998.

[Srivastava 2000]
B. Srivastava. RealPlan: Decoupling causal and resource reason-
ing in planning. In Proc. of 17th National Conference on AI,
pages 812–818. AAAI/MIT Press, 2000.

[Stefik 1981]
M. Stefik. Planning with constraints (MOLGEN: Parts 1 and 2).
Artificial Intelligence, 16(2):111–170, 1981.

[Tsang 1993]
E.P.K. Tsang. Foundations of Constraint Satisfaction. Academic
Press, London and San Diego, 1993.

[vanBeek/Chen 1999]
P. van Beek and X. Chen. CPlan: A constraint programming
approach to planning. In Proc. of 16th National Conference on
Artificial Intelligence, pages 585–590. AAAI/MIT Press, 1999.

[Vossen et al. 1999]
T. Vossen, M. Ball, A. Lotem, and D. Nau. On the use of integer
programming models in AI planning. In Proceedings of Interna-
tional Joint Conference on AI, (IJCAI-99), pages 304–309, 1999.

[Westfold/Smith 2001]
S.J. Westfold and D.R. Smith. Synthesis of efficient constraint
satisfaction programs. Knowledge Engineering Reviews: Special
Issue on AI and OR, 2001.

[Wilkins/desJardins 2000]
D. Wilkins and M. desJardins. A call for knowledge-based plan-
ning. In Proc. of AI Planning and Scheduling (AIPS) Workshop
on Analyzing and Exploiting Domain Knowledge for Efficient
Planning, 2000.

[Wilkins 1988]
D.E. Wilkins. Practical Planning: Extending the Classical AI
Planning Paradigm. Morgan Kaufmann Publishers Inc., San
Francisco, CA, 1988.

[Wolfman/Weld 1999]
S. Wolfman and D. Weld. The LPSAT engine and its application
to resource planning. In Proc. of 16th International Joint Confer-
ence on AI, pages 310–317. Morgan Kaufmann, 1999.

[Younes/Simmons 2002]
H.L.S. Younes and R.G. Simmons. On the role of ground actions
in refinement planning. In Proceedings of the Sixth International
Conference on Artificial Intelligence Planning and Scheduling
Systems, pages 90–97, 2002.

