Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Analysis of the dynamics of local error control via a piecewise continuous residual

Higham, D.J. and Stuart, A.M. (1998) Analysis of the dynamics of local error control via a piecewise continuous residual. BIT Numerical Mathematics, 38 (1). pp. 44-57. ISSN 0006-3835

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Positive results are obtained about the effect of local error control in numerical simulations of ordinary differential equations. The results are cast in terms of the local error tolerance. Under the assumption that a local error control strategy is successful, it is shown that a continuous interpolant through the numerical solution exists that satisfies the differential equation to within a small, piecewise continuous, residual. The assumption is known to hold for the MATLAB ode23 algorithm [10] when applied to a variety of problems.Using the smallness of the residual, it follows that at any finite time the continuous interpolant converges to the true solution as the error tolerance tends to zero. By studying the perturbed differential equation it is also possible to prove discrete analogs of the long-time dynamical properties of the equation-dissipative, contractive and gradient systems are analysed in this way.