Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

The neuromuscular activity of paradoxin: a presynaptic neurotoxin from the venom of the inland taipan (Oxyuranus microlepidotus)

Hodgson, Wayne C. and Dal Belo, Cháriston André and Rowan, E.G. (2007) The neuromuscular activity of paradoxin: a presynaptic neurotoxin from the venom of the inland taipan (Oxyuranus microlepidotus). Neuropharmacology, 52 (5). pp. 1229-36. ISSN 0028-3908

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The inland taipan is the world's most venomous snake. However, little is known about the neuromuscular activity of the venom or paradoxin (PDX), a presynaptic neurotoxin from the venom. Venom (10microg/ml) and PDX (65nM) abolished indirect twitches of the chick biventer cervicis and mouse phrenic nerve diaphragm preparations. The time to 90% inhibition by PDX was significantly increased by replacing Ca(2+) (2.5mM) in the physiological solution with Sr(2+) (10mM). In the biventer cervicis muscle, venom (10microg/ml), but not PDX (65nM), significantly inhibited responses to ACh (1mM) and carbachol (20microM), but not KCl (40mM). In the mouse diaphragm (low Ca(2+); room temperature), the inhibitory effect of PDX (6.5nM) was delayed and a transient increase (746+/-64%; n=5) of contractions observed. In intracellular recording experiments using the mouse hemidiaphragm, PDX (6.5-65nM) significantly increased quantal content and miniature endplate potential frequency prior to blocking evoked release of acetylcholine. In extracellular recording experiments using the mouse triangularis sterni, PDX (2.2-65nM) significantly inhibited the voltage-dependent K(+), but not Na(+), waveform. In patch clamp experiments using B82 mouse fibroblasts stably transfected with rKv 1.2, PDX (22nM; n=3) had no significant effect on currents evoked by 10mV step depolarisations from -60 to +20mV. PDX exhibits all the pharmacology associated with beta-neurotoxins, and appears to be one of the most potent, if not the most potent beta-neurotoxin yet discovered.