Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

The neuromuscular activity of paradoxin: a presynaptic neurotoxin from the venom of the inland taipan (Oxyuranus microlepidotus)

Hodgson, Wayne C. and Dal Belo, Cháriston André and Rowan, E.G. (2007) The neuromuscular activity of paradoxin: a presynaptic neurotoxin from the venom of the inland taipan (Oxyuranus microlepidotus). Neuropharmacology, 52 (5). pp. 1229-36. ISSN 0028-3908

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The inland taipan is the world's most venomous snake. However, little is known about the neuromuscular activity of the venom or paradoxin (PDX), a presynaptic neurotoxin from the venom. Venom (10microg/ml) and PDX (65nM) abolished indirect twitches of the chick biventer cervicis and mouse phrenic nerve diaphragm preparations. The time to 90% inhibition by PDX was significantly increased by replacing Ca(2+) (2.5mM) in the physiological solution with Sr(2+) (10mM). In the biventer cervicis muscle, venom (10microg/ml), but not PDX (65nM), significantly inhibited responses to ACh (1mM) and carbachol (20microM), but not KCl (40mM). In the mouse diaphragm (low Ca(2+); room temperature), the inhibitory effect of PDX (6.5nM) was delayed and a transient increase (746+/-64%; n=5) of contractions observed. In intracellular recording experiments using the mouse hemidiaphragm, PDX (6.5-65nM) significantly increased quantal content and miniature endplate potential frequency prior to blocking evoked release of acetylcholine. In extracellular recording experiments using the mouse triangularis sterni, PDX (2.2-65nM) significantly inhibited the voltage-dependent K(+), but not Na(+), waveform. In patch clamp experiments using B82 mouse fibroblasts stably transfected with rKv 1.2, PDX (22nM; n=3) had no significant effect on currents evoked by 10mV step depolarisations from -60 to +20mV. PDX exhibits all the pharmacology associated with beta-neurotoxins, and appears to be one of the most potent, if not the most potent beta-neurotoxin yet discovered.