Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Under-arm partial body weight unloading causes spinal elongation and vibration attenuation during treadmill walking

Pollock, R. and Heneghan, P. and Riches, P.E. (2008) Under-arm partial body weight unloading causes spinal elongation and vibration attenuation during treadmill walking. Gait and Posture, 28 (2). pp. 271-277. ISSN 0966-6362

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Whilst exercise is beneficial to those suffering from low back pain (LBP), spinal shrinkage and vibration during walking may aggravate the condition. This study investigates the effects of spinal unloading, by means of body-weight unloading (BWU), on spinal length and vibration response. Under-arm partial BWU (40% of bodyweight) was performed on 8 healthy males whilst walking on a treadmill for 1 h, and compared to a control condition in the same participants. Motion analysis was used to track four reflective markers attached to the spine between C7 and the lumbar concavity at 100 Hz, in 7 s samples at regular intervals during the walk. A quintic polynomial was fitted to the coordinates in the sagittal plane, and sub-sectioned into three regions: the upper thoracic (UT), lower thoracic (LT) and upper lumbar (UL). The lengths of the curves were analysed in the time and frequency domains. The length of the spine increased by 4 ± 2% (18 mm) during the unloading condition with all regions showing an increase in length. The UL and LT regions lost length in the control condition, thereby exhibiting a significant interaction between unloading and time on region length (both P < 0.05). In addition, compared to the control condition, the frequencies of the length changes were attenuated between 3 and 6 Hz with unloading. Therefore, under-arm BWU facilitates spinal elongation, attenuates the frequency response of the spine in its resonant frequency regime and thus has potential benefits to the LBP population.