Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Exposure of 3T3 mouse fibroblasts and collagen to high intensity blue light

Smith, S. and Maclean, M. and MacGregor, S.J. and Anderson, J.G. and Grant, M.H. (2008) Exposure of 3T3 mouse fibroblasts and collagen to high intensity blue light. In: Proceedings of the 13th International Conference on Biomedical Engineering. IFMBE Proceedings, 23 (Track 4). Springer, pp. 1352-1355. ISBN 978-3-540-92840-9

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The field of tissue engineering is continually expanding and advancing with the development of hybrid biomaterials incorporating active biomolecules, such as mammalian cells and DNA, into scaffolds. Sterilization of these biomaterials for clinical use has become an issue as the most common methods of sterilizing biomaterials, gamma radiation and ethylene oxide treatment, not only have a detrimental effect on the base scaffold, but are also incompatible with biological molecules. There has been long standing interest in the effect of light on biological cells and tissues. Recently, exposure to blue light has become of interest for applications including skin treatment (acne vulgaris) and for the inactivation of problematic microorganisms. High-intensity blue light in the 405 nm region has previously been shown to be an effective bacterial decontamination method and may have a potential application for biomaterials. This study investigated the effect of blue light treatment on both the structure of collagen, the most widely used scaffold for tissue engineering applications, and on the viability of a mammalian cell line (3T3 mouse fibroblasts). Type I collagen solution was treated with the blue light (405 nm) at 10 mW/cm2 for 1 hour and SDS-PAGE analysis used to determine the effect on the gross structure of the collagen monomer. To determine the effect of the blue light exposure (1.0 mW/cm2 for 1 hour) on mammalian cell viability the following methods were used: MTT and Neutral Red microplate assays, measurement of reduced glutathione and protein content, and leakage of cytoplasmic lactate dehydrogenase (LDH) activity. Results show that blue light treatment, for the power densities detailed above, had no noticeable effect on the gross structure of the collagen monomer, nor did it affect the viability, redox state, growth rate or LDH leakage of 3T3 cells.

Item type: Book Section
ID code: 18409
Notes: ISSN: 1680-0737
Keywords: blue-light, collagen, fibroblasts, cell viability, redox status, bioengineering, Bioengineering, Engineering (General). Civil engineering (General)
Subjects: Technology > Engineering (General). Civil engineering (General) > Bioengineering
Technology > Engineering (General). Civil engineering (General)
Department: Faculty of Engineering > Bioengineering
Faculty of Engineering > Electronic and Electrical Engineering
Related URLs:
    Depositing user: Ms Ashley Urie
    Date Deposited: 26 Mar 2010 14:32
    Last modified: 17 Jul 2013 13:30
    URI: http://strathprints.strath.ac.uk/id/eprint/18409

    Actions (login required)

    View Item