Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Measurement of urinary medium chain acyl glycines by gas-chromatography negative-ion chemical ionization mass-spectrometry

Carter, S.M.B. and Midgely, J.M. and Watson, D.G. and Logan, R.W. (1991) Measurement of urinary medium chain acyl glycines by gas-chromatography negative-ion chemical ionization mass-spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 9 (10-12). pp. 969-975. ISSN 0731-7085

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Medium chain acyl-CoA dehydrogenase (MCAD) deficiency is an inborn error of fatty acid metabolism, which is difficult to diagnose, partly because of its unpredictable clinical presentation. A specific diagnostic marker is an increased excretion of certain medium chain acyl glycines. A sensitive and specific method has been developed for the extraction, derivatization, identification and quantitation of urinary medium chain acyl glycines by gas chromatography-negative ion chemical ionization mass spectrometry (GC-NICIMS). The following series of standard acyl glycines has been synthesized and characterized: hexanoyl, octanoyl, 3-phenylpropionyl and suberyl and their respective isotopomers (using13C2-glycine; for use as internal standards). The range of excretion of these compounds in normal subjects has been established using this method and increased excretion of acyl glycines, particularly hexanoyl, 3-phenylpropionyl and suberyl was successfully demonstrated in three MCAD deficient subjects from one family.