Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

The potential use of ir dyes for metal ion sensors

Rolinski, O.J. and Downie, I.R. and Holmes, A.S. and Birch, D.J.S. (1995) The potential use of ir dyes for metal ion sensors. Proceedings of SPIE the International Society for Optical Engineering, 2388 (290). pp. 290-301. ISSN 0277-786X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The fluorescence quenching of molecules by analytes of interest, is a widely employed phenomenon in fluorescence sensing technology. Forster type dipole-dipole energy transfer from dye molecules to transition metal ions, provides a method of monitoring the concentration of these ions with some degree of selectivity. Each metal ion has a different absorption spectrum, hence, in principle it is possible to choose different fluorophores for each metal ion. In the present work, quenching studies of the carbocyanine dye DTDCI by transition metal ions in a viscous solvent and a Nafion polymer matrices are reported. The potential for fabricating near-infrared energy transfer sensors is assessed, particularly with regard to detecting copper ions in solution.