Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

The response of the short pulse free-electron laser oscillator to periodic perturbation of the cavity synchronism

Jaroszynski, D.A. and Oepts, D. and Van der Meer, A.F.G. and Chaix, P. (1998) The response of the short pulse free-electron laser oscillator to periodic perturbation of the cavity synchronism. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 407 (1). pp. 407-412. ISSN 0168-9002

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The detailed optical pulse structure of the short pulse free-electron laser depends on the synchronism between optical and electron pulses in the cavity. For certain cavity detuning a regular train of optical pulses are produced and the macroscopic energy of the optical pulses exhibits a limit cycle. We show that the instabilities associated with the limit cycle and chaotic behaviour can be examined by periodically adjusting the cavity desynchronism. Resonances have been observed at the limit cycle, the period doubled, etc. frequencies. Moreover, the optical power close to these resonances is enhanced and the frequency of the optical pulse microstructure in the cavity is locked to the perturbing frequency leading to possible new methods of synchronising external lasers to the free-electron laser.