Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Finite element modelling of sling-supported pressure vessels

Nash, D.H. and Banks, W.M. and Bernaudon, F. (1998) Finite element modelling of sling-supported pressure vessels. Thin-Walled Structures, 30 (1-4). pp. 95-110. ISSN 0263-8231

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

A novel sling design for the support of horizontal pressure vessels is modelled by finite element methods. Each component is initially considered some distance apart and then brought together by using three-dimensional contact surfaces. Thereafter, external loads, such as self-weight, liquid fill and internal surcharge pressure, are applied to the combined model. Several numerical difficulties arising because of the different flexibilities of the vessel shell and the sling support, which has the form of a cloth material, are overcome. The vessel strains and contact interface pressures are evaluated and plotted and show good agreement with experimental work. The magnitude of the strains at the location of the traditional saddle horn is significantly reduced. The maximum strain, however, is found to have moved to a new location well within the sling contact angle.