Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Detection of a dna sequence by surface enhanced resonance raman scattering of a modified dna probe

Watson, N.D. and Graham, D. and Smith, W.E. and White, P. and Linacre, A. (1998) Detection of a dna sequence by surface enhanced resonance raman scattering of a modified dna probe. In: Progress in Forensic Genetics 7: Proceedings of the 17th International ISFH Congress. International Congress Series (1167). Elsevier, pp. 6-8. ISBN 0444829652

[img]
Preview
PDF (strathprints018330.pdf)
strathprints018330.pdf

Download (168kB) | Preview

Abstract

The technique we are reporting, Surface Enhanced Resonance Raman Scattering, SERRS, exploits the light scattering, or Raman scattering, produced when a light beam illuminates molecules. The effect is weak and depends on the molecular structure so that some molecules are weaker scatters than others are. Accordingly signals from strong scatters can be detected in the presence of weaker ones such as water. The effect is enhanced up to 106 fold if the analyte is adsorbed onto a roughened metal surface, i.e. Surface Enhanced Resonance Scattering (SERS). A further enhancement is achieved by utilizing a dye as the analyte and by tuning the laser excitation frequency to the maximum of the dye chromophore to obtain resonance scattering from the surface i.e. SERRS.