Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

The effect of novel processing on hydrogen uptake in feti- and magnesium-based alloys

Morris, S. and Dodd, S.B. and Hall, P.J. and Mackinnon, A.J. and Berlouis, L.E.A. (1999) The effect of novel processing on hydrogen uptake in feti- and magnesium-based alloys. Journal of Alloys and Compounds, 293-295. pp. 458-462. ISSN 0925-8388

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

This paper discusses the production and initial evaluation of hydrogen storage alloys produced by physical vapour deposition (PVD) and mechanical alloying (MA). PVD is usually associated with the production of thin films and coatings. However, DERA Farnborough have developed a high rate vapour condensation process to produce bulk deposits, in some cases up to 44 mm thick. Vapour condensation using electron beam evaporation produces the ultimate in cooling rates with extended solid solubility and refinement of microstructure, which produce enhanced physical and mechanical properties. MA is a complimentary technique for processing hydrogen storage materials which has been developed within DERA over the past 3 years. These techniques have been applied to Mg and FeTi alloy systems and it is shown that both methods greatly enhance the amount of hydrogen uptake and the ease of activation.