Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

The effect of novel processing on hydrogen uptake in feti- and magnesium-based alloys

Morris, S. and Dodd, S.B. and Hall, P.J. and Mackinnon, A.J. and Berlouis, L.E.A. (1999) The effect of novel processing on hydrogen uptake in feti- and magnesium-based alloys. Journal of Alloys and Compounds, 293-295. pp. 458-462. ISSN 0925-8388

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

This paper discusses the production and initial evaluation of hydrogen storage alloys produced by physical vapour deposition (PVD) and mechanical alloying (MA). PVD is usually associated with the production of thin films and coatings. However, DERA Farnborough have developed a high rate vapour condensation process to produce bulk deposits, in some cases up to 44 mm thick. Vapour condensation using electron beam evaporation produces the ultimate in cooling rates with extended solid solubility and refinement of microstructure, which produce enhanced physical and mechanical properties. MA is a complimentary technique for processing hydrogen storage materials which has been developed within DERA over the past 3 years. These techniques have been applied to Mg and FeTi alloy systems and it is shown that both methods greatly enhance the amount of hydrogen uptake and the ease of activation.

Item type: Article
ID code: 18328
Keywords: mechanical alloying, physical vapour deposition, hydrogen storage, thermal analysis, Chemical engineering
Subjects: Technology > Chemical engineering
Department: Faculty of Engineering > Chemical and Process Engineering
Faculty of Science > Pure and Applied Chemistry
Related URLs:
    Depositing user: Strathprints Administrator
    Date Deposited: 26 Mar 2010 19:09
    Last modified: 12 Mar 2012 11:10
    URI: http://strathprints.strath.ac.uk/id/eprint/18328

    Actions (login required)

    View Item