Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

The effect of novel processing on hydrogen uptake in feti- and magnesium-based alloys

Morris, S. and Dodd, S.B. and Hall, P.J. and Mackinnon, A.J. and Berlouis, L.E.A. (1999) The effect of novel processing on hydrogen uptake in feti- and magnesium-based alloys. Journal of Alloys and Compounds, 293-295. pp. 458-462. ISSN 0925-8388

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

This paper discusses the production and initial evaluation of hydrogen storage alloys produced by physical vapour deposition (PVD) and mechanical alloying (MA). PVD is usually associated with the production of thin films and coatings. However, DERA Farnborough have developed a high rate vapour condensation process to produce bulk deposits, in some cases up to 44 mm thick. Vapour condensation using electron beam evaporation produces the ultimate in cooling rates with extended solid solubility and refinement of microstructure, which produce enhanced physical and mechanical properties. MA is a complimentary technique for processing hydrogen storage materials which has been developed within DERA over the past 3 years. These techniques have been applied to Mg and FeTi alloy systems and it is shown that both methods greatly enhance the amount of hydrogen uptake and the ease of activation.