Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Modelling the reponse features of optical sensors for oxygen: an overview

Mills, A. (2003) Modelling the reponse features of optical sensors for oxygen: an overview. Proceedings of SPIE the International Society for Optical Engineering, 3856. pp. 232-242. ISSN 0277-786X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The response features of optical oxygen sensors based on luminescence quenching are complex and typically include downward curving Stern-Volmer plots and multi-exponential luminescence decays in the absence and presence of oxygen. The principle features and failings of some of the established models used to describe these response features are considered. A new model is introduced: 'a log-Gaussian distribution in (tau) 0 and kq,i ' model, or 'log- Gaussian' model for short. The key basic equations of this model are given and appear able to simulate the diverse response characteristics of many optical oxygen sensor. The model is used to fit the observed Stern Volmer plots and luminescence decays for two real sensors. The model appears to provide a reasonable physical basis for the very diverse response characteristics observed for optical oxygen sensors.