Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Dehydriding kinetics of a mg-9.5 wt% v sample by high pressure differential scanning calorimetry

Berlouis, L.E.A. and Aguado, R.P. and Hall, P.J. and Morris, S. and Chandrasekaran, L. and Dodd, S.B. (2003) Dehydriding kinetics of a mg-9.5 wt% v sample by high pressure differential scanning calorimetry. Journal of Alloys and Compounds, 356-357. pp. 584-587. ISSN 0925-8388

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The effect of the additive V on the rate of hydrogen desorption from MgH2 is investigated using high-pressure differential scanning calorimetry (HP-DSC). The HP-DSC data obtained at different temperatures were analysed in terms of the nucleation and growth of the Mg phase within the hydride matrix and the subsequent movement of the phase boundary. Activation energies (EA) obtained for the different steps show that the rate determining step is very much dependent on the conditions of dehydriding. The high value of EA found (600 kJ mol−1 H) for the nucleation step suggests that the V inhibits nucleation of the α-Mg from the hydrided Mg-9.5 wt% V composite sample. This has been attributed to the precipitation of vanadium in the MgH2 matrix creating accommodation strains, leading to dislocations around the vanadium particles. These can then act as sinks for the hydrogen thereby increasing the activation energy for nucleation of hydrogen.