Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Dehydriding kinetics of a mg-9.5 wt% v sample by high pressure differential scanning calorimetry

Berlouis, L.E.A. and Aguado, R.P. and Hall, P.J. and Morris, S. and Chandrasekaran, L. and Dodd, S.B. (2003) Dehydriding kinetics of a mg-9.5 wt% v sample by high pressure differential scanning calorimetry. Journal of Alloys and Compounds, 356-357. pp. 584-587. ISSN 0925-8388

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The effect of the additive V on the rate of hydrogen desorption from MgH2 is investigated using high-pressure differential scanning calorimetry (HP-DSC). The HP-DSC data obtained at different temperatures were analysed in terms of the nucleation and growth of the Mg phase within the hydride matrix and the subsequent movement of the phase boundary. Activation energies (EA) obtained for the different steps show that the rate determining step is very much dependent on the conditions of dehydriding. The high value of EA found (600 kJ mol−1 H) for the nucleation step suggests that the V inhibits nucleation of the α-Mg from the hydrided Mg-9.5 wt% V composite sample. This has been attributed to the precipitation of vanadium in the MgH2 matrix creating accommodation strains, leading to dislocations around the vanadium particles. These can then act as sinks for the hydrogen thereby increasing the activation energy for nucleation of hydrogen.