Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Learning models of plant behavior for anomaly detection and condition monitoring

Brown, A.J. and Catterson, V.M. and Fox, M. and Long, D. and McArthur, S.D.J. and , IEEE (2008) Learning models of plant behavior for anomaly detection and condition monitoring. In: International Conference on Intelligent Systems Applications to Power Systems, 2007-11-05 - 2007-11-08.

[img]
Preview
PDF
Learning_Models_of_Plant_Behaviour_for_Anomaly_Detection_and_Condition_Monitoring_1_.pdf - Preprint

Download (514kB) | Preview

Abstract

Providing engineers and asset managers with a tool which can diagnose faults within transformers can greatly assist decision making on such issues as maintenance, performance and safety. However, the onus has always been on personnel to accurately decide how serious a problem is and how urgently maintenance is required. In dealing with the large volumes of data involved, it is possible that faults may not be noticed until serious damage has occurred. This paper proposes the integration of a newly developed anomaly detection technique with an existing diagnosis system. By learning a hidden Markov model of healthy transformer behavior, unexpected operation, such as when a fault develops, can be flagged for attention. Faults can then be diagnosed using the existing system and maintenance scheduled as required, all at a much earlier stage than would previously have been possible.