Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Pseudospark sourced beam-wave interaction experiments

Cross, A.W. and Yin, H. and He, W. and Phelps, A.D.R. and Ronald, K. and Whyte, C.G. and Robertson, C.W. and , IEEE (2007) Pseudospark sourced beam-wave interaction experiments. In: Joint 32nd International Conference on Infrared and Millimeter Waves, 2007 and the 2007 15th International Conference on Terahertz Electronics, 2007-09-02 - 2007-09-09.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

A pseudospark (PS) discharge has been shown to be a promising source of high quality, high intensity electron and ion beam pulses. A PS electron beam is ideal to drive high frequency radiation generators in the W-band (75 GHz to 110 GHz) due to its small beam size and the compactness of the device. This paper will present experimental results of the production of pseudospark-sourced electron beams from a 14-gap pseudospark discharge powered by a pulsed power system (a cable pulser) capable of producing 120 ns duration and 180 kV voltage pulses. Interaction between the electron beam and a W-band backward slow wave structure has been simulated using the particle-in-cell code MAGIC. High power radiation in the W-band frequency range was predicted. Microwave pulses were successfully detected from the experiment.